TABLE OF CONTENTS

COURSE OVERVIEW
- EFFECTIVE TRAINING ARTICLES (PRE-COURSE RECOMMENDED READING) .. 3
- PREPARATION FOR THE COURSE ... 4
- COURSE GOALS ... 5
- LEARNING OBJECTIVES .. 5
- SCHEDULE ... 6
- SEMINAR CONTENT OUTLINE .. 7

DAY 1
- LEARNING OBJECTIVES .. 9
- FOUNDATIONS OF EFFECTIVE TRAINING 10
- PRACTICAL SESSIONS .. 21
- PRACTICAL EXERCISE 1—SEEING MOVEMENT FAULTS 21
- COMMON MOVEMENT THEMES FOR FUNCTIONAL MOVEMENTS .. 22
- PRACTICAL EXERCISE 2—CORRECTING MOVEMENT FAULTS 30
- CLASS STRUCTURE ... 31
- EXAMPLE LESSON PLANS ... 36
- EXAMPLE WARM-UPS TO ADDRESS WEAKNESSES 38
- TEACH BACK 1—ONE-ON-ONE COACHING 40

DAY 2
- LEARNING OBJECTIVES .. 42
- TEACH BACK 2—GROUP COACHING .. 43
- EFFECTIVE PROGRAM DESIGN .. 45
- GROUP PROGRAMMING ANALYSIS ... 61
- HEAVY DAYS ... 66
EFFECTIVE TRAINING ARTICLES
(PRE-COURSE RECOMMENDED READING)

Virtuosity [Open Letter to Trainers]. (PDF)

Glassman G. 2006 (Jan. 1).
Professional Training. (PDF)

Glassman G. 2006 (Jan. 1).
Scaling Professional Training. (PDF)

Glassman G. 2011 (Sept. 6).
Pursuit of Excellence With Greg Glassman. (VIDEO)

Glassman G. 2013 (Jan. 22).
Pursuing Excellence and Creating Value. (VIDEO)

Bergeron B. 2011 (Dec. 2).
The Deeper Side of Coaching. (PDF)

Bergeron B. 2012 (Dec. 17).
The Pursuit of Excellence. (PDF)

Bergeron B. 2012 (June 16).
The Emotional Bank Account. (VIDEO)

Bergeron B. 2012 (July 7).
Coaching the Positive. (VIDEO)

CrossFit. 2014 (Dec 18).
Developing Virtuosity in Coaching. (PDF)

CrossFit. 2014 (Dec 18).
Responsible Training. (PDF)

Hobart J. 2012 (Sept. 23).
Coaching as a Skill: Verbal Cueing. (PDF)
PREPARATION FOR THE COURSE

A large focus of this course is allowing participants time to practice and work on their coaching abilities in real time. These sections are called “Practical Exercises” and “Teach Backs” where the staff lead participants in coaching drills, as well as provide feedback on each person’s ability to coach others in CrossFit’s foundational movements.

The best preparation for this is coaching experience. In preparation, however, participants are encouraged to use resources in the Level 1 Training Guide. Specifically, see the section titled Nine Foundational Movements Summary (pp. 105–114), and print copies for this course. More importantly, study and practice the material therein to be prepared to effectively teach one’s peers.

We also recommended that participants take the Online Scaling Course prior to attending the course. This short course aids a trainer’s ability to optimize scaling for their clients, which is a topic in the course’s programming section.
COURSE GOALS

The Level 2 Certificate Course is intended to improve participants’ understanding and implementation of:

1. Essential mechanics of functional movement
2. Fault identification and correction
3. Essential qualities of an effective trainer
4. Effective programming design and evaluation
5. Class management strategies for effective group workouts

LEARNING OBJECTIVES

At the completion of the Level 2 Certificate Course, participants will be able to:

1. Describe essential mechanics of functional movement.
3. Identify static and dynamic faults.
4. Define effective methods for correcting faults.
5. Demonstrate correction of faults using tactile, verbal, and visual cues.
6. Exhibit and assess effective presence and attitude.
7. Identify and demonstrate essential qualities of an effective trainer.
8. Describe strategies for designing a program and evaluating its effectiveness.
9. Outline and describe each key component of a class lesson plan.
10. Evaluate the group management skills of a trainer.
11. Evaluate individual’s athletic capacity and be able to scale workouts to the appropriate level as needed.
SCHEDULE

DAY 1

9:00 – 9:40 Opening Remarks and Methodology Lecture
9:40 – 11:00 Coaching Development
11:00 – 12:05 Methodology Lecture
12:05 – 1:05 Lunch
1:05 – 2:25 Coaching Development
2:25 – 3:25 Workout / Methodology Practical
3:25 – 3:55 Methodology Lecture
3:55 – 4:05 Methodology Practical
4:05 – 5:10 Coaching Development
5:10 – 5:15 Closing Remarks

DAY 2

9:00 – 9:30 Opening Remarks and Methodology Practical
9:30 – 10:45 Coaching Development
10:45 – 12:05 Methodology Lecture
12:05 – 1:05 Lunch
1:05 – 2:40 Methodology Practical
2:40 – 3:50 Coaching Development
3:50 – 4:10 Methodology Lecture
4:10 – 5:05 Workout / Coaching Development
5:05 – 5:15 Closing Remarks
SEMINAR CONTENT OUTLINE

The CrossFit Level 2 Certificate Course is a two-day course comprised of 3 segments:

- Methodology Lectures
- Methodology Practicals
- Coaching Development

Details regarding these components, and total time of each, are outlined below. The course is a two-day course (9 AM–5:15 PM) with a **total number of 14.5 content hours**.

1. METHODOLOGY LECTURES

<table>
<thead>
<tr>
<th>Component</th>
<th>Hours Allocated (Percent of Course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Effective Training</td>
<td>0.7 (5%)</td>
</tr>
<tr>
<td>• Six criteria needed for effective training</td>
<td></td>
</tr>
<tr>
<td>Common Movement Themes for Functional Movements</td>
<td>1.1 (7%)</td>
</tr>
<tr>
<td>• Major themes common to most all movements</td>
<td></td>
</tr>
<tr>
<td>• How a trainer can assess these themes in movement</td>
<td></td>
</tr>
<tr>
<td>• How these themes confer safety and performance benefits</td>
<td></td>
</tr>
<tr>
<td>Class Structure</td>
<td>0.5 (3%)</td>
</tr>
<tr>
<td>• Components of an effective class</td>
<td></td>
</tr>
<tr>
<td>• Evaluating a class based on these factors</td>
<td></td>
</tr>
<tr>
<td>• Discussion of best practices</td>
<td></td>
</tr>
<tr>
<td>Effective Program Design</td>
<td>1.3 (9%)</td>
</tr>
<tr>
<td>• Effective programming and how to evaluate</td>
<td></td>
</tr>
<tr>
<td>• Common pitfalls</td>
<td></td>
</tr>
<tr>
<td>• Programming considerations for groups and how best to optimize individuals’ fitness with a GPP program (e.g., scaling and weakness work)</td>
<td></td>
</tr>
<tr>
<td>Heavy Days</td>
<td>0.3 (2%)</td>
</tr>
<tr>
<td>• Definition of a “heavy day” workout</td>
<td></td>
</tr>
<tr>
<td>• Necessity of their inclusion for optimizing fitness</td>
<td></td>
</tr>
<tr>
<td>• Coaching and logistical considerations for running an effective session</td>
<td></td>
</tr>
</tbody>
</table>

METHODOLOGY LECTURES TOTAL 3.9 hours (27%)
2. METHODOLOGY PRACTICALS

<table>
<thead>
<tr>
<th>Component</th>
<th>Hours Allocated (Percent of Course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Class</td>
<td>1.0 (7%)</td>
</tr>
<tr>
<td>• Components of effective training across an entire CrossFit class</td>
<td></td>
</tr>
<tr>
<td>• Sample template to follow at your own affiliate</td>
<td></td>
</tr>
<tr>
<td>Group Programming Analysis</td>
<td>1.6 (11%)</td>
</tr>
<tr>
<td>• Program Design Task</td>
<td></td>
</tr>
<tr>
<td>• Put methodology into practice</td>
<td></td>
</tr>
<tr>
<td>Training Demonstrations</td>
<td>0.7 (5%)</td>
</tr>
<tr>
<td>• Apply course concepts in a one on one and small group format</td>
<td></td>
</tr>
</tbody>
</table>

METHODOLOGY PRACTICALS TOTAL 3.3 hours (22%)

3. COACHING DEVELOPMENT

<table>
<thead>
<tr>
<th>Component</th>
<th>Hours Allocated (Percent of Course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeing Practical</td>
<td>1.3 (9%)</td>
</tr>
<tr>
<td>• Fault recognition skills</td>
<td></td>
</tr>
<tr>
<td>Correcting Practical</td>
<td>1.3 (9%)</td>
</tr>
<tr>
<td>• Fault correction skills</td>
<td></td>
</tr>
<tr>
<td>Teach Back – One on One Coaching</td>
<td>1.2 (8%)</td>
</tr>
<tr>
<td>• Coaching practice time of one individual</td>
<td></td>
</tr>
<tr>
<td>• Coaching assessment based on the criteria of effective training</td>
<td></td>
</tr>
<tr>
<td>Teach Back – Small Group Coaching</td>
<td>2.5 (17%)</td>
</tr>
<tr>
<td>• Coaching practice time of multiple individuals</td>
<td></td>
</tr>
<tr>
<td>• Coaching assessment based on the criteria of effective training</td>
<td></td>
</tr>
<tr>
<td>Coaching Under Load</td>
<td>1.1 (7%)</td>
</tr>
<tr>
<td>• See and correct athletes using intensity</td>
<td></td>
</tr>
</tbody>
</table>

COACHING DEVELOPMENT TOTAL 7.3 hours (51%)
LEARNING OBJECTIVES

At the completion of Day 1, participants will be able to:

1. Describe essential mechanics of functional movement
2. Demonstrate essential mechanics of functional movement
3. Identify static and dynamic faults
4. Define effective methods for correcting faults
5. Demonstrate correction of faults using tactile, verbal, and visual cues
6. Exhibit and assess effective presence and attitude
7. Identify and demonstrate essential qualities of an effective trainer
8. Outline and describe each key component of a class lesson plan
FOUNDATIONS OF EFFECTIVE TRAINING

Where the Level 1 Certificate Course provides an introduction to functional movements and CrossFit methodology, the Level 2 Certificate Course is focused on improving a trainer’s ability to coach others.

A trainer’s ability to coach others rests on capacity in six different areas:

- Teaching
- Seeing
- Correcting
- Group Management
- Presence and Attitude
- Demonstration

The depth and breadth of a trainer’s capacity in each area affects not only whether clients become more fit but also the degree to which the clients become more fit. Effectiveness can be assessed by asking whether clients optimize work capacity across broad time and modal domains (i.e., whether a client becomes as fit and healthy as possible). A newer trainer may have rudimentary capacity in each area, however, clients can still see results because of the inherent benefits of performing constantly varied functional movements at high intensity. An effective trainer has the ability to safeguard health and improve performance for a client beyond what he or she could do alone.

Although these areas can be described and defined independently (below), there is a natural overlap among them in a real-time coaching environment. A deficiency in any one area can prevent a trainer’s success. Even a weakness in one area relative to the others blunts the trainer’s overall reach. For example, a trainer with tremendous knowledge and technical skill (teaching, seeing and correcting) will still have difficulty retaining members if there is little personal connection with them (presence and attitude).

Regardless of a trainer’s current level of proficiency, a commitment to improving each area is the hallmark of a successful trainer. Similar to the athlete’s path to refining and improving movement mechanics, a trainer must refine coaching skills across a career to become great. Doing so develops virtuosity in coaching.

TEACHING

The ability to effectively articulate and instruct the mechanics of each movement. This includes the ability to focus on major points of performance before more subtle or nuanced ones. It includes the ability to change instruction based on the athlete’s needs and capacity.

To teach functional movements, a trainer must first understand what defines proper mechanics and what may cause poor movement. A trainer must know ideal positions, but more frequently a trainer’s job is to teach athletes how to improve on poor positions and movement patterns.

Knowledge in fitness related areas

Beyond movement mechanics, trainers can also instruct clients in other areas that may improve their fitness. Greater knowledge in any field that overlaps with fitness, such
L2 Certificate Course Training Guide

DAY 1

as anatomy and physiology, nutrition, or even expertise in a certain sport, can all aid a trainer’s teaching. The more athletically advanced the athlete, the greater the depth of knowledge needed for a trainer to produce additional fitness gains. Continued research, education, and practical experience over a career develop a breadth of knowledge applicable to any athlete, from beginner to elite.

Teaching demands not only possessing knowledge but also the ability to impart it to others. Knowledge alone does not make one an effective teacher: successful teaching hinges on a trainer’s ability to accurately convey as much of that knowledge as possible to others.

Effective communication

To convey this knowledge effectively, a teacher must be able to change his or her communication style to meet the capacity of the student, regardless of his or her background, ability, and learning style. This is why trainers are best served by using different means of communication – visual and verbal teaching, for example – to help aid learning. Implicit in this dialogue is the trainer taking responsibility for when communication with the athlete breaks down. It is the trainer’s responsibility to guide and lead the athlete, and it is the athlete’s responsibility to be committed to the process. However, if the athlete is clearly frustrated with the instruction, the trainer must change strategies or communication style until the athlete succeeds.

A trainer can also assess the effectiveness of teaching and communication by assessing if the athlete meets performance expectations. If no one in a group moves to the level the trainer expects, he or she needs to re-evaluate the instruction. It is often not the athlete’s fault: a good teacher can prevent a large percentage of problems from occurring with effective communication. For example, it is often effective to break complex movements down into a progression, or logical teaching steps, that allow the athlete to practice pieces that naturally build on one another. A teacher who shows an athlete a barbell clean, describes it in its entirety, and then asks the class to replicate it can expect few (if any) to match the instruction. Conversely, using a progression – such as that demonstrated at the Level 1 Course for the medicine-ball clean – will get more athletes to demonstrate the gross mechanics quickly. These progressions can often help a trainer focus on seeing certain faults as well.

“As much … as necessary” often means the teacher must reduce and simplify his or her body of knowledge to the one or two most salient points at that moment for that particular athlete. With fast-paced human movement, change is often hampered by long and detailed explanations when simple, broad-brush instructions are more digestible. This does not mean a trainer’s knowledge of the system should be simple; it is the explanation that should be. A trainer can ask himself or herself, “What is the one thing this athlete needs right now?” This “answer” will change as progress is made.

SEEING

The ability to discern good from poor movement mechanics and identify both gross and subtle faults whether the athlete is in motion or static.

A trainer who can effectively assess the mechanical positions as sound or unsound
throughout movement has capacity in “seeing.” “Seeing” is the necessary first step for a trainer to bring about change in a client’s mechanics, but it rests on one’s “teaching” capacity (knowledge). Trainers must first know positions of best mechanical leverage, as well as the effect of varying anthropometrics on these positions. If a trainer does not know what to look for, he or she will not see correctible issues.

Static faults
The trainer must also use visual-recognition skills throughout the repetition, whether the athlete is static or dynamic. Static positions are the points at which the athlete is not moving, even briefly. Static positions usually occur near the end ranges of motion – either in the starting, receiving, or finishing positions. There is a brief pause or decreased speed, often due to a change of direction. Static positions may be the set-up position for a deadlift or at the bottom of a squat, for example. These static positions are easier for a trainer to correctly identify faults because there is more time for assessment.

Dynamic faults
Dynamic positions find the athlete moving between the static positions, often at a high speed. Examples of faults seen in dynamic movements include not reaching full hip extension in the drive phase of a clean, pressing early in a push press, or initiating the squat with the knees. These dynamic faults are more difficult to identify because of the decreased time for assessment. The trainer must also know when and where to see faults during the movement. For example, a trainer needs to see that the athlete has the weight on the heels during the drive phase of a push jerk, but he or she is also evaluating the trunk-to-femur relationship for hip extension, the bar path relative to the frontal plane, among a host of other relationships. Generally, a profile view of the athlete (offset by about 45 degrees), is the most useful view to assess one’s mechanics, but trainers should not be limited to using this view only.

The difficulty in seeing dynamic faults increases as:
1. the athlete moves more quickly
2. the faults become subtler

Years of experience help a trainer effectively coach any level of athlete. New trainers may use a few methods to develop their ability to see faults, particularly dynamic faults. One method is to study film: slow the movement down to a series of static frames. A trainer may choose to film his or her own athletes or simply watch footage available on the Internet. Replaying the footage in real time after observing the movement in a static series can help bridge the gap between static and dynamic “seeing.” Another strategy for newer trainers is to methodically survey athletes for only one fault at a time. For example, when teaching athletes the push jerk, the trainer may choose to watch only for hip extension during the first several repetitions. Then, the trainer may choose to watch and see if the athletes drive through their heels. Over time, trainers can observe multiple faults simultaneously (e.g., hip extension and weight on the heels), but initially, trying to see everything often results in seeing nothing. Similarly, newer trainers generally find more success by watching one athlete at a time per repetition instead of scanning multiple athletes with every repetition.
CORRECTING

The ability to facilitate better mechanics for an athlete using visual, verbal, and/or tactile cues. This includes the ability to triage (prioritize) faults in order of importance, which includes an understanding of how multiple faults are related.

The ability of a trainer to facilitate improved mechanics is dependent on capacities in teaching and seeing. Teaching reflects a trainer’s knowledge of proper mechanics; seeing reflects a trainer’s ability to discern these positions in real time. If capacity is limited in either, it follows that the trainer’s capacity in correcting will also be weak.

Correcting mechanics results in both increased performance gains as well as decreased risk for injury. A trainer can expect to correct an athlete’s mechanics forever; mechanics can be infinitely refined to create ever more efficient positions as the athlete progresses. CrossFit trainers should strive for excellent mechanics in their clients and avoid settling for “OK” movement. This means a trainer must be able to correct both gross and subtle deviations in all levels of athletes. They must set a high standard of good movement and be relentless in the constant pursuit of “better.”

Correcting hinges on the trainer’s ability to:
1. Use successful cues.
2. Know multiple corrections for each fault.
3. Triage faulty movement.
4. Balance critique with praise.

Cues
Any cue that results in improved movement mechanics is successful and therefore, a “good” cue. There is no specific formula, format, or rules to follow for cues, and their value is based on the result. A cue’s primary function is to help the athlete execute perfect mechanics, not to perfectly describe the mechanics of the movement. For example, one may say “weight in heels” to help a person shift weight back and better achieve pressure across the foot (versus on the toes). Generally, making cues short, specific, and actionable tends to result in a greater success rate. Short, specific, and actionable cues are useful because the trainer gives a single task for the athlete to complete. An example of this type of cue is, “Push your knees out.” It is short (four words), specific to a body part (knees), and also indicates action and/or direction (out). It is easy for the athlete to respond to a cue such as this, even when performing a complicated movement.

It is possible for a trainer to confuse cueing with fault identification. For example, pointing out the fault that is present – “Your knees are caving in” – does not tell the athlete how to fix it. An experienced athlete may be able to make the connection between hearing identification of the fault and then fixing it, but this “translation” from fault identification to specific direction is ultimately the trainer’s responsibility.

Trainers may also rely on more technical language in their cues (i.e., “You are losing your midline.”), which assumes the athlete has a significant amount of fitness-related knowledge. While such language may give the appearance of being more technical (and perhaps an attempt to be more intelligent), it is at best a vague verbal cue. Cues should be kept to simple language that is easily understood by anyone. Non-specific language is also
best avoided in cues. Something such as, “Get tight!” or “Chest!” can be meaningless to the athlete, especially in the absence of instruction on how to “get tight,” and where and how to move the chest.

A basic three-step process for developing short, specific, and actionable cues is:

1. Identify the fault
2. Identify what is out of place (be specific: name the body part)
3. Give direction to that body part

As stated before, “Push your knees out,” would be a short, specific, and actionable cue.

However, even with short, specific, and actionable cues, there is no guarantee the athlete’s movement will improve. The trainer needs to use multiple cues until the fault is resolved. There are cases in which a cue that is effective for one athlete is ineffective for another, and in other cases even a “good cue” may result in poor movement. “Get your weight on your heels” is a short, specific, and actionable cue that often results in an athlete keeping their heels down. Nevertheless, some athletes interpret this cue to mean that the weight should be on their heels exclusively, and they fall backwards or lose their balance. That does not mean that the cue was bad or the trainer was wrong; it means the trainer has to try an alternative cue.

A trainer should not be limited to a certain set of cues for a specific fault, and he or she should continue to use different cues until the movement improves. Over time, a trainer develops corrective strategies, building a bank of options for every fault. These corrective strategies should include verbal (i.e., speaking), visual (i.e., showing), and tactile (i.e., touching) cues, all of which may be employed to fix the same fault but may be interpreted differently among athletes. Verbal cues tell the athlete a specific instruction, visual cues create contrasting images between current and desired positioning, and tactile cues use physical targets to achieve proper mechanics. The greater the number of strategies a trainer can employ for any fault, the more likely he or she will be successful in correcting the fault.

Triaging faults

Determining which single fault to correct can be a challenge as multiple faults often occur together. Ideally, every fault would be addressed simultaneously, but this is unrealistic in practice. The trainer is best served by triaging the faults observed. The term “triaging” is most often used in medicine to assign urgency to those needing medical attention. Triaging when coaching movement means assigning urgency to the multiple faults present in order of the most to least important. Greater importance is assigned to faults that have the highest risk for injury (and, therefore, also the greatest potential to limit performance). In a loaded environment, there are many cases in which the fault to address first would be loss of a neutral spine, usually in flexion. However, a flexed lumbar curve at depth in an air squat is less concerning than that same position in a loaded back squat. This athlete needs to continue to air squat to full depth, fighting for a neutral midline, all while maintaining the range of motion required by life. It is precisely the practice of the movement, even with less-than-ideal mechanics, that will eventually allow him or her to reclaim positions that can be loaded. In this example, completing the full range of motion was given more priority than midline stabilization. The ordering is based on the severity
of the deviation from ideal and the athlete’s capacity relative to the task; there is no single ordering of faults that can be used across all athletes in all applications.

Whichever fault the trainer decides to fix first, it should become the trainer’s focus. He or she has to selectively ignore the other faults present. Once that fault is fixed or remedied at least to the degree that it is no longer the most important, the trainer can move on to the next issue.

After choosing which fault to address, the trainer needs to know how each fault is related. A trainer may cue a different body part than the one he or she is trying to fix due to the interrelatedness of movement mechanics. Suppose an athlete performs an air squat with the following faults: weight shifting forward, knees collapsing, and back rounding. The trainer needs to consider: are the caving knees causing the back to round? Is the rounded back causing the weight to shift forward? Perhaps the trainer chooses to address the back position first but actually tells the athlete, “Push the knees out.” There are cases in which allowing more room for the pelvis helps create a neutral spine position.

Assess the cue’s effectiveness and provide feedback
After a trainer delivers a cue, he or she must stay with that athlete for at least another repetition to assess the result. Whatever the athlete’s response, the trainer needs to provide feedback. A trainer needs to let the athlete know if the movement was the same, better, or worse. If the movement improves, a trainer needs to acknowledge that, perhaps with, “That’s better” or, “Good correction.” This helps the athlete develop the kinesthetic awareness of proper positioning. In some cases, an athlete may improve movement but not to the desired degree. Encouraging these athletes simply to give “more” in that same direction is often a sound strategy (e.g., “That’s better, but even lower!”). If the movement has not changed, this could be addressed simply by, “Not there yet,” or, “I’ll come back to you,” for example. An unsuccessful cue should not be repeated multiple times with that athlete; instead, the trainer should find a new cue. If the movement changes for the worse, the trainer also needs to immediately recognize this and stop or reverse it (e.g., “Other way.”).

Not staying to assess the effectiveness of a cue and provide the athlete with feedback is almost the same as not giving a cue at all. If a trainer tells an athlete to do something and walks away before seeing the result, it is possible there is no change or even change for the worse. The athlete has no idea if his or her efforts have resulted in improvement. All feedback, positive and negative, is tied to the athlete developing better kinesthetic awareness. Precision of word choice is critical. The use of “good” or “better” needs to be reserved for actual sound or improved mechanics and not used as a filler.

Throughout the cueing process, a trainer must also be aware when praise for hard work (regardless of change) is necessary. There are cases where no change or only a very slight change occurs in a session. Celebrating the effort acknowledges the hard work put forth that day, and helps a client’s willingness to continue to work hard. A trainer just needs to be clear when the praise is for the effort versus a movement that still needs improvement.

GROUP MANAGEMENT
The ability to organize and manage, both at a micro level (within each class) and at the
macro gym level. This includes managing time well; organization of the space, equipment, and participants for optimal flow and experience; planning ahead; etc.

Group management is not just about organizing logistical considerations for a class so clients have enough space, time and equipment to complete the workout. It is managing these variables optimally to result in the best possible instruction (see Class Structure notes). Poor planning of any aspect of a class – for example, the amount of time spent on certain parts, how the equipment is set up, how much time is allotted to each participant – can all detract from the quality of the experience.

Adhere to the schedule
At its most basic level, effective group management means adhering to posted schedules. Clients plan their schedules around these announced times, and it should not be assumed they have more or flexible time. Adhering to posted times means both starting and ending on time: running over is as unacceptable as starting late. Ending late usually occurs when a trainer does not plan ahead and think through the entire class schedule. Schedules also refer to the schedule within each class. Following a simple template (such as warm-up, workout, and post-workout) every class helps ensure necessary time is devoted to each piece (see Class Structure notes). The trainer may also consider the experience level of the class to determine what pieces need more time or less time during instruction.

Space and equipment layout
Group management also includes variables such as space layout and equipment availability. The layout needs to account for buffer zones around any equipment in use and should also take into account when athletes have to move to different areas of the gym during the workout. The class size often dictates what workouts are realistic given the equipment and space. Even in cases in which neither is limited, an effective trainer should have pre-determined alternatives for any class workout should a larger number of participants show up unexpectedly.

Group management speaks to the trainer’s ability to reduce the logistical set-up and preparation time during a class so as to maximize the amount of teaching and movement time. This means the trainer plans ahead and perhaps pre-arranges a complicated workout with multiple pieces of equipment and/or weights. Spending several or more minutes sorting equipment takes away from a trainer’s time to instruct, improve, and refine movement.

Plan how and what to teach
Time spent on the instruction can also reduce the client’s practice time. A trainer needs to plan how and what to teach to maximize the client’s time moving. Allowing for enough practice time every class is necessary for both the trainer and client. Less practice time gives the trainer less time to observe and cue movement mechanics, as well as less time for a client to work on movement with improved form. Change in mechanics comes from continual cueing across many repetitions.

During every class, the trainer also needs to manage the attention given to each participant. Every student should feel he or she received “enough” attention. While some
clients need more time than others, even “good movers” with subtle inefficiencies need to be coached, pushed for higher speed and/or loads, or praised for sound performance. Attention still benefits them. To assist with each client getting enough individual attention, a helpful tool is to keep the group on the trainer’s cadence for all repetitions during a warm-up or skill work. Controlling when the group moves ensures the same amount of repetitions are completed by everyone. It also allows the trainer to systematically and selectively observe individuals and specific aspects of their movement.

The size of the class affects how much time a trainer can spend with each person, but class size should not be beyond the trainer’s capacity. The demands of large classes often result in a trainer who resorts to being a crowd herder, timekeeper, and cheerleader, with little time spent on cueing individual movement faults. Newer trainers (less than two years) can rarely find success when stepping into classes of 10-plus participants. In his article “Scaling Professional Training,” CrossFit Founder and CEO Greg Glassman outlined that his group classes came to be after years of one-on-one personal training produced groups of two, eventually groups of three, and so on, only until growth resulted in “perceived reduction in attention” to each paying member.

Regardless of experience, trainers should make an honest assessment of the time and attention given to each client after each training session. Did he or she make an assessment of each athlete’s weaknesses? Did he or she make real movement change that session? If the answer to either question is no, the session was likely too large for the trainer. The goal is to maximize a trainer’s effectiveness and reach.

PRESENCE AND ATTITUDE

The ability to create a positive and engaging learning environment. Shows empathy for athletes and creates rapport.

“Presence and attitude” refers to the trainer’s ability to create a positive rapport with, and atmosphere for, each client. Although more subjective than the other five areas of effective training, presence and attitude is equally, if not more, important.

Know your clients

An effective trainer recognizes that each person has different abilities, personalities, insecurities, needs, and goals, and has the awareness and interpersonal skills to respond accordingly. The trainer recognizes that individuals respond differently to instruction and critique, and makes it his or her responsibility to determine how best to relate to and motivate each individual regardless of background and ability.

A trainer must be aware of whether each client is interested in each class; a client’s needs may change with the days and external life demands. The trainer should know what is happening with most of the group most of the time, and this goes beyond movement mechanics. This includes issues such as who is struggling that day due to external pressures or stress, who has high energy, who is aloof or annoyed, who is new to the gym, etc. All these factors may affect the degree to which the athletes can perform relative to their usual capacity. A trainer knows these things because they routinely interact with their clients and are invested in their relationship with them.
The common trait of trainers with a positive presence and attitude is that they genuinely care about their clients’ success. It is this care that means more to clients than the trainer’s knowledge. Many clients have little interest in the technical aspects of training. Their interests often lie in unrelated professions and hobbies, and they are at the gym to improve the quality of their lives. The mechanisms of their success in the gym are much less important to them than the results and success itself. In addition to seeing results, clients know if they feel welcomed and cared for, respected, inspired, and motivated. They can sense whether the trainer has their best interests at heart.

Be authentic
A positive presence and attitude cannot be faked; it comes from a sincere passion for service. It can take on many forms based on the trainer’s personality and interpersonal skills. Trainers should not interpret this as being any single trait, such as “loud,” “funny,” or “bubbly.” Trainers are encouraged to be authentic. There is room for any personality type to succeed if a trainer couples genuine caring with awareness of his or her limitations and recognizes the effect they may have on clients. This may motivate a trainer to become a better version of himself or herself. A trainer may set personal goals to compensate for any perceived shortcomings. For example, a trainer who is perceived as reserved may make an effort to be at class early to welcome and greet each member.

Newer trainers especially may be shy or nervous in front of a group, and this may blunt their presence and attitude. Small mechanical changes, such as eye contact, open body language, and smiling, can go a long way to put the trainer’s best foot forward. Delivering simple questions to clients about well-being, really listening to answers, and following up are basic interpersonal skills a trainer can initially rely on until they become more comfortable and engaged with their clients.

DEMONSTRATION
The ability to provide athletes with an accurate visual example of the movement at hand. A trainer may do this using himself or herself as an example or by choosing another athlete to provide the example. This requires a strong awareness of one’s own movement mechanics. This also includes the concept of leading by example; a trainer should follow his or her own advice and be an inspiration to clients.

Provide a visual aid
Demonstration is a powerful visual tool to aid a trainer’s instruction. This does not necessarily mean a trainer must move perfectly; rather, a trainer must be able to use demonstration to enhance his or her coaching. This may be to demonstrate the points of performance, show range-of-motion standards, or explain movement corrections.

Use of demonstration reflects the trainer’s knowledge of sound movement: each trainer should understand his or her own movement well enough to use it as a teaching tool. This requires a trainer to adjust demonstrations depending on the group and its needs. Just like teaching, demonstration may have to be made more simple and obvious vs. realistic and subtle for the needs of the trainees. In cases in which a trainer’s mechanics are limited, using others for demonstration is perfectly acceptable. Trainers who have the capacity to discern good movement patterns quickly do not have a problem finding an effective substitute.
Demonstrate credibility
Demonstration also covers whether a trainer demonstrates to others that he or she ascribes to the program that is recommend and hold himself or herself to the same standards and values expected of clients. Demonstration more broadly speaks to the trainer’s credibility. Leading by example has a large influence on the culture creation at the trainer’s gym. A trainer can ask the questions: how do I get my clients to care about technique? To push themselves harder? To adhere to workout standards? To treat each other with respect? Many answers can be provided by examining a trainer’s own attitude and actions. The trainer needs to work on improved technique, use high intensity, follow the same program, follow the range-of-motion standards, count repetitions correctly, support and encourage one another, etc.

This means a trainer can utilize himself or herself as a laboratory to use firsthand experience to address clients’ questions and help them reach their goals, including diet strategies, workout programs, competition scenarios, etc. Insight and advice are best delivered when they are the result of experience. By having firsthand experience, the trainer also serves as a source of motivation for others.

A trainer is in a position of leadership, and leading by example has a trickledown effect to every part of a community. The trainer becomes the model or standard all members wish to emulate.

CONCLUSION
Teaching, seeing, correcting, group management, presence and attitude, and demonstration are the six areas in which trainers can evaluate and develop themselves or the trainers who work for them. An effective trainer must have capacity in each area, and a trainer’s effectiveness is limited by capacity in each. A professional trainer continues to develop capacity in each area across his or her entire career. This is chasing virtuosity in coaching. “Doing the common uncommonly well” does not only apply to movement; it can apply to any particular skill. CrossFit trainers chase excellence in every aspect of their craft; always intending to better serve those who have entrusted their health to them.
PRACTICAL SESSIONS

Approximately half of the course is spent in small groups working on coaching drills in real time. Although each session has a slightly different format and focus, the primary goal is to provide tools for participants to assess themselves, as well as strategies for where and how to improve.

For each practical, questions are provided for the participant to organize their note taking and to critically evaluate their training. Feedback from the instructors should help participants answer these questions, but it is not the course’s intent for instructors to provide a comprehensive evaluation of all the listed areas. Participants should take some time after each practical to self-assess their coaching.

The instructors feedback focuses on the major factor (or factors) currently limiting your coaching as well as the facets of your coaching that are the strongest. We recommend writing down the feedback from the instructor as well as any feedback given to or by other participants that resonate with you.

PRACTICAL EXERCISE 1—SEEING MOVEMENT FAULTS

- The goal of this session is to practice the basic skills of seeing absent from the other demands of coaching (e.g., group management). It also develops the skill of prioritization, both in movement faults of one specific athlete, as well as across a small group.
- These drills are meant to enhance coaching techniques for small group training, but the drills are not effective as a stand-alone coaching style. Once proficiency with the drill is gained, the goal is to integrate that skill into a complete coaching method.

SELF-ASSESSMENT

<table>
<thead>
<tr>
<th>Ability to see:</th>
<th>Needs Improvement</th>
<th>Satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Faults</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>(e.g., set-up, finish)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic faults</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>(e.g., hip extension, forward inclination)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which static faults were you inconsistent in identifying?

Which dynamic faults were you inconsistent in identifying?

Which movement(s) did you feel you missed the most faults?

What did you learn? What could you do to improve?
COMMON MOVEMENT THEMES FOR FUNCTIONAL MOVEMENTS

INTRODUCTION
There are common movement themes displayed in all foundational movements, from the nine foundational movements in the Level 1 Certificate Course to others like the snatch, kipping pull-up, and handstand push-up. They broadly categorize similar positions and movement patterns, whether the athlete is static (starting, receiving, or finishing positions) or dynamic (moving between static positions). These themes are:

- Midline stabilization.
- Core-to-extremity movement.
- Balance about the frontal plane.
- Posterior-chain engagement.
- Sound hip function.
- Active shoulders.
- Full range of motion about a joint.
- Effective stance and/or grip.

By understanding them, and the context in which to apply them, these themes are general principles with which a coach can evaluate all movement. There are positions or movement patterns that do not fit neatly into these categories, as well as movements that do not demonstrate all the themes. This list is not meant to be exhaustive. It is simply a classification tool that can be used to aid development of one’s coaching skill set.

These themes are exemplified when an athlete performs a movement correctly (i.e., adhering to the points of performance). The movement themes increase the potential for improved performance and minimize the risk for injury. Sound mechanics aid performance and risk management by using positions with the best mechanical and muscular alignment, conferring safety, efficacy, and efficiency simultaneously.

ASSESSING SAFETY AND PERFORMANCE
Simply observing an athlete’s position in movement does not provide enough of a context to assess safety risk and performance benefit. Risk to either is assessed in light of the individual’s:

1. athletic capacity
2. loading
3. positioning
4. assigned tasks

A trainer cannot identify “bad” positions without this greater context. Decreased performance and increased injury are more likely as the athlete moves further from a sound position or as loads increase relative to the athlete’s maximum. For example, picking up a grocery bag with a rounded back is a common occurrence and contains little safety risk for many CrossFit athletes. Nevertheless, this same positioning could be more problematic for a beginner deadlifting 135 lb. or an advanced competitive athlete deadlifting 500 lb.

In daily training, athletes are encouraged to exercise using the correct positions to develop strength and awareness. Using sound mechanics promotes greater potential
power development and decreased injury risk in the long term. Training in the best positions, regardless of the load present, develops a sound default motor pattern that better prepares them for loaded and high-intensity scenarios.

Because of the benefits to safety, efficacy, and efficiency, proper mechanics are a daily focus of CrossFit trainers. Working toward better movement is not only for beginners and is arguably more important as the athlete advances. The margin for error decreases as load and speed increase. Top competitors rely on efficiencies that can create seconds of gain. A trainer cannot settle for anything less than excellent mechanics. For example, an immature squat may be a safe position, but if the athlete can learn to lift the chest, every degree of elevation can increase the loads that can be lifted in a clean or snatch, for example. A trainer must challenge himself or herself to develop better athletes beyond their current capacity.

MIDLINE STABILIZATION

A “midline” is a plane of bilateral symmetry, but it is used in CrossFit to specifically refer to the relationship of the spine (base of the head to top of the hips) and pelvis during functional movement. This midline trisects the spine and bisects the pelvis when the two are in their neutral anatomical relationship. Stabilization means something has been made stable, or “static.” Midline stabilization is the athlete’s capacity to prevent movement from this neutral spinal position and is synonymous with “core strength.” Midline stabilization determines whether the athlete can maintain the natural S-curve of the spine to the pelvis when dynamic and/or loaded. Some lifting applications rely on a midline posture with some extension past neutral in both the lumbar and thoracic regions. Regardless, this posture is maintained throughout the movement.

Stabilization of the spine is largely accomplished by the engagement of the abdominals (“abs”), internal and external oblique muscles (“obliques”), and erector spinae (“spinal erectors” or simply “erectors”). Engagement of the abdominals helps engage the spinal erectors and obliques; together, they create a belt of musculature around the vertebrae.

Torso as a rigid, integrated structure

This neutral, static position maximizes performance because moving the torso as one rigid, integrated structure enables the transmission of force between the appendages and perhaps an object. In a push jerk, for example, the legs and hips extend force upward into the weight through the torso. A soft midline does not allow optimal transfer of force to the bar.

When maintaining a neutral spine, the orientation of the vertebrae results in favorable distribution of forces such that the position reduces the risk for injury. Where possible, it is more ideal to have the midline in a vertical orientation because of the optimal muscular and skeletal alignment for force distribution (e.g., in a squat). As the torso moves from a vertical orientation, as in the deadlift, the demand on the musculature to maintain a neutral spine increases. Movement of the torso forward, however, does not alone increase the risk of injury if midline stabilization is present. It is when midline stabilization is lost that the shear force experienced by the spine increases. The human spine is more susceptible to injury when exposed to shear (vs. compression) forces. The resulting shear force attempts to push one vertebra past another, while muscles and ligaments resist this loss.
of positioning. If they are not strong enough, an injury to the spine may occur.

Deviations from neutral
Deviations from neutral may occur in flexion (bending forward from neutral) or extension (bending backwards from neutral). Recall that a natural function of the abdominals is to flex the spine, so spinal flexion by itself is not necessarily problematic (e.g., getting out of bed) and potentially beneficial to reduce the lever arm (e.g., gymnastics holds). Similarly, the erectors extend the spine, and extending past neutral is not inherently dangerous without knowing the degree of deviation and the load on the body.

The following hierarchy of spinal positioning is listed in order of increasing risk for injury:

- Safest: Midline stabilization in a neutral position.
- More risky: A non-neutral spine in a static position. Although less ideal than midline stabilization in a neutral position, static positions (flexed or extended) prevent movement of the individual spinal segments. This means no one individual vertebra bears the majority of the lifting force.
- Most risky: Loss of a neutral spine during movement, specifically when starting from neutral and moving to significant spinal flexion. This is potentially the most injurious, as there is movement of the individual spinal segments and one or a few vertebra(e) bear the majority of the lifting force.

The most common injury from a loss of midline stabilization is when the lumbar spine (L1-L5) flexes under load, changing the normal concave curvature of the lower back to convex. Typically, flexion of the spine is seen with increased hip flexion or when the midline is resisting a load on the front side of the body, as in a deadlift.

Athletes may also deviate from neutral by overextending or hyperextending the spine, which means significantly bending backward from neutral into an injurious range of motion. There is a difference between the natural S-curvature of the spine and an exaggerated extension of the spine. Placing athletes in an overextended position does not increase the benefits of a neutral spine and may place them at risk for injury. Hyperextension can result in the same injuries as excessive flexion (i.e., damage to facet joints, disc herniation). Hyperextension generally occurs with more flexible athletes or occasionally with more advanced athletes. Overextension or hyperextension often points to a lack of engagement of the abdominals and can generally be addressed by cueing an athlete to tighten the abs. It is most often seen when an athlete lifts overhead.

CORE-TO-EXTREMITY MOVEMENT
Core-to-extremity movements demonstrate a sequence of muscular contraction that begins with the large-force-producing, low-velocity muscles of the core (abdominals and spinal erectors) and hips and ends with small-force-producing, high-velocity muscles of the extremities (e.g., biceps, calves, wrist flexors). Core-to-extremity movement begins with establishing midline stabilization for effective force transfer; a “base” is created and force radiates from there. This muscular patterning teaches the athlete fluid transmission of power from one area of the body to another. Core-to-extremity movement maximizes performance because it tasks the largest musculature to generate force first, allowing the greatest forces to develop. This sequence improves efficiency and allows the greatest work to be accomplished.
Core-to-extremity movements are less risky than movements that violate this pattern because the largest muscles are tasked with generating the most force. Smaller muscle groups and associated tendons and ligaments have a higher likelihood of an injury, such as tearing, when exposed to loading designed for larger movers.

Core-to-extremity movements are found everywhere, not just with movements that involve the arms and legs, so faults can show up everywhere. Even a shoulder press or a deadlift may not effectively demonstrate core-to-extremity movement absent a stable midline. For dynamic faults, core-to-extremity violations occur when there is an incorrect timing of the arms moving before the hips and legs have extended (i.e., pulling or pushing early).

BALANCE ABOUT THE FRONTAL PLANE

The frontal plane divides the athlete into anterior and posterior halves. It is the plane about which one is balanced, and it bisects the athlete at mid-foot. Referencing the athlete’s movement (i.e., his or her line of action) and the object he or she is moving relative to the frontal plane can often determine the athlete’s efficiency.

Significant deviations of the athlete and/or object forward from the frontal plane prevent successful task completion, especially as the loading increases. These deviations can also impair other points of performance (i.e., neutral spine, weight on the heels). Generally, moving an object along straight lines (i.e., in the frontal plane) can increase performance by increasing efficiency as the object follows the shortest distance between two points. Note, however, the athlete’s movement accommodates the object and may or may not be characterized by straight lines. For example, in a movement such as the squat, an effective line of action is created when the hips sit back and down as the knees bend. In this manner, the athlete is best able to keep the weight on the heels, and when the squat is loaded, the bar travels in the shortest line. This movement also can reduce excessive force at the patella, which may occur if the knees translate excessively forward (i.e., such that the heels come up).

Balance about the frontal plane can also be referenced in a kipping pull-up, where the plane is formed from the hands to the floor. The athlete is most efficient when the center of mass oscillates about this plane to maintain the most efficient timing of the swing. In the kipping pull-up, when the center of mass deviates from the frontal plane too much, the athlete loses timing and has to reset the swing.

A lack of balance about the frontal plane may increase the risk for injury because of increased potential for other movement errors. For example, if the chest drops in a front squat with the bar deviating forward of the frontal plane, it may also result in flexing of the spine. However, a violation of balance about the frontal plane by itself is not terribly risky.

POSTERIOR-CHAIN ENGAGEMENT

The posterior chain includes the group of muscles, tendons, and ligaments on the posterior (back) of the body, to include the hamstrings (biceps femoris, semitendinosus, semimembranosus), gluteal muscles (“glutes”), and spinal erectors. “Engagement” means that this musculature contributes to the movement. This is “engagement” of the
posterior-chain rather than use of the posterior chain in an attempt to exclude the anterior chain. Ideally, there is a balance of pressure between the balls of the feet and the heels, with the line of action at the frontal plane. Posterior-chain engagement also enables the athlete to maintain optimal knee alignment with the foot.

Inclusion of this large set of musculature on the backside of the body maximizes performance because of the increased power generation, thereby resulting in faster speed to completion or increased load lifted. Keeping the heels rooted brings the load closer to the frontal plane, which helps the athlete stay balanced and drive the load up, not forward. This increases efficiency. Engagement of the spinal erectors is also essential for maintaining midline stabilization and providing the strongest base to transmit forces. Finally, engagement of the posterior chain helps keep the knees in line with the toes, where there is the best mechanical position of leverage between the upper and lower leg, greater musculature is recruited to move the load, and enough room is created for full range of motion in a squatting movement. When the knees collapse inward, the center of pressure shifts forward (given the angle at which the knees flex). This positioning is often a result of underdeveloped external rotators of the hip.

Posterior-chain engagement lends itself to safety because it helps promote midline stabilization and balance about the frontal plane. Also, keeping the knees in line with the toes reduces lateral and rotational forces at the knee joint. These forces are problematic for a hinge joint such as the knee. Damage could result to associated tendons, ligaments, cartilage, and menisci, especially when poor mechanics are allowed to go unchanged over long periods of time. It is less likely that a single repetition causes significant damage to the joints, but thousands of repetitions performed over time can wear its structural integrity.

Pressure in the feet

A lack of posterior-chain engagement results in the athlete (and/or object) shifting excessively forward of the frontal plane. A trainer can see this by observing the center of pressure in the feet in all movements, especially with any knee or hip flexion. This may or may not occur in conjunction with the heel coming off the floor. The heel can remain on the ground while the center of pressure shifts forward.

This may also indicate premature shifting of weight to the toes, especially during an explosive hip extension, which results in the hip extending forward rather than upward. If an athlete jumps forward during a lift, it may be an indication of a premature shift of weight to the toes. “Triple extension” is not a forced calf raise in conjunction with extension of the knees and hips; it is achieved when the heels leave the ground because of, and after, a violent extension, thereby creating extension of the hip, knee, and ankle joints. Analysis of elite lifters shows that the longer a lifter remained in contact with the ground during the second pull, the greater the acceleration on the bar. Greater surface area in contact with the ground enables a greater force to be transferred.

Knee position

With regard to knee position, although there are two directions the knees can travel to come out of alignment with the feet (laterally or medially), the fault is usually seen when the knees collapse inward (medially). The degree of deviation in knee alignment generally
increases with increased hip and knee flexion in a movement and/or wider stances. Further, an athlete with a poor knee position in any movement often produces the error to some degree any time the knee flexes. For example, an athlete whose knees collapse in a squat is likely to have the knees collapse to a less obvious degree in running, box jumps, push presses, etc.

SOUND HIP FUNCTION

Sound hip function refers to the athlete's ability to flex and extend the hip to maximize its contribution to the movement. The hamstrings and glutes are powerful hip extensors. Powerful and complete hip extension is necessary for elite athletic capacity because it:

1. applies the most force on the object
2. creates the most elevation on the object, giving the athlete the most time to accommodate or receive it.

There are no major safety issues with slow or incomplete hip extension.

Poor hip function is usually expressed in one of three ways:

1. muted hip
2. lack of hip extension
3. slow hip extension

A muted hip never closes/flexes (and therefore is a “permanently” open hip). If the hip never closes, the movement is predominantly driven by the quadriceps. The quadriceps extend the knee without contribution from the hamstrings and glutes. Lack of hip extension does not allow the power of the hamstrings and glutes to be fully expressed. This does not effectively put acceleration on the bar or object, and, therefore, does not elevate it to any significant degree. Even small deviations from full hip extension result in reduced power transmission. The speed of hip extension plays a critical role in accelerating the object being lifted, particularly when the object must be elevated far beyond its starting point (e.g., from rack to overhead). In all cases, the power of the musculature of the hips is not optimally expressed.

ACTIVE SHOULDERS

An “active shoulder” is the most stable position for the shoulder when working against a load. This means an active shoulder is present in the overhead lifts, as well as the deadlift series to include the deadlift, sumo deadlift high pull, and medicine-ball clean. Outside of the foundational nine movements from the Level 1 Certificate Course, active shoulders are found in the kipping pull-up, ring dip, handstand push-up, row, and snatch, among others.

Active shoulders are about scapular position and stabilization and require different actions by the athlete depending on the movement. In each, the athlete attempts to keep the shoulder in a relatively neutral, natural position, without yielding to a load while at the same time creating enough space between the anatomical structures of the shoulder so they may pass freely without impingement. Typically, this means an athlete demonstrates an active shoulder by applying force in the direction opposite of the load. For example, in an overhead squat, the athlete pushes up on the barbell. In a push-up, the athlete pushes down into the ground. In a row, the athlete pulls back to prevent the rounding of the shoulders forward. There are also cases in which an active shoulder is not achieved by
pushing into the load (e.g., bench press). In all movements, the retraction, elevation, etc. is not taken to the end range that results in contrived position. For example, retraction in a deadlift is not full retraction that may result in a loss of midline stabilization or a position that would not be possible under any real load.

An active shoulder creates optimal skeletal alignment that enables the most musculature of the torso (e.g., trapezius) to aid in the stability of the shoulder and potentiate the greatest forces. An active shoulder also moves the acromion process out of the way of the humerus, reducing the chance for impingement of the biceps tendons and rotator-cuff muscles. The chances for impingement increase as the grip narrows. In an overhead squat, for example, a wider grip requires less elevation to create clearance space.

When an athlete loses an active shoulder, the direction the shoulders move (e.g., forward, down) is dependent on the movement. The coach needs to observe where the force is being applied from, and determine if the shoulders are moving in that same direction (e.g., yielding).

FULL RANGE OF MOTION ABOUT A JOINT

Full range of motion about a joint describes the natural anatomical beginning and end positions of a movement. Full range of motion allows a greater complement of musculature to be used (e.g., reaching full depth in a squat, using active shoulders) and overall better mechanical advantage (e.g., bar resting on the body in the front rack). Joint safety is maximized by preserving that required by life, while best distributing forces at any one joint or throughout a series of joints. The result is that more power that can be generated via increased load and/or speed. Additionally, increasing the musculature and joints involved allows the athlete to develop the neuromuscular coordination that is universally found in compound movements and sport.

Toward the other extreme, hyperextension or artificially trying to create more range of motion past a joint’s natural anatomical function can be detrimental to joint health; more is not always better.

Training to the full range of motion in functional movements best prepares an individual for any conceivable task. While life’s tasks may not always require full range of motion, training to the limits of one’s natural end range prevents deficiencies when eventually tasked there. Using full range of motion preserves joint health, flexibility, and strength, reducing the chance of injury and decrepitude later in life. If there is not a more pressing safety issue that needs to be fixed first, a trainer needs to preserve full range of motion above much else (e.g., adding load, increasing speed).

EFFECTIVE STANCE AND/OR GRIP

This refers to the foot and hand position adopted during a movement, where the optimal stance and grip promote task accomplishment and the ability to display all the movement’s points of performance.

There are two common stances in CrossFit. A narrower stance (hip width) is used in the deadlifts, presses and the Olympic lifts, which promotes a more direct transfer of force through the heels/floor and into the object being moved. A wider stance (shoulder width)
is used in squatting movements, allowing for greater depth and contribution of the posterior chain. Some force-transfer efficiency may be lost with the wider stance (relative to hip width), but function and range of motion are gained. It is possible to take a different stance to allow for different loading mechanics. For example, a wider stance is adopted in the sumo deadlift. This allows the torso to remain more upright, allowing the legs and hips to more readily assist the back during the lift.

The grip is usually outside the shoulders or hips so as not to interfere with the object or other points of performance, but it may also be wider if the demands of the movement require it. For example, the grip in the deadlift should be wide enough so as not to interfere with the legs, but it is significantly wider in the snatch to reduce the overall distance the bar must travel.

In many real-life applications with odd objects, a wider stance or narrower grip may be used. It is critical for athletes to learn how to apply the other points of performance regardless of the stance and grip used to accommodate an object. This is especially true for preparing an athlete for situations outside the gym, when a more convenient stance and grip are not always possible.

There are no major safety concerns from a lack of effective stance or grip except when other points of performance are adversely affected. The value of any stance and grip adjustment should be assessed on its effect on all of the other points of performance in the movement.

CONCLUSION

These themes provide a template from which a trainer can evaluate all movement in order to maximize both safety and performance for his or her athletes. The ability to recognize violations and correct them is essential for a trainer, regardless of whether the athlete’s violation is major or minor.

Understanding these also provides a template for evaluating other approaches to coaching a movement. They can help a coach think critically about any methods before including them in instruction: if there is not a clearly demonstrable mechanism that creates a safer or more effective movement, it is usually an unnecessary distraction.

For example, suppose a coach considers a new starting posture for the snatch or clean. He or she wants to use a dynamic start such that the athlete moves through the set-up without a pause into the first pull. If the athlete is able to achieve the common themes (e.g., midline stabilization, posterior-chain engagement, balance about the frontal plane, etc.) in a static start, and there is no clear performance gain from a dynamic start (i.e., increased loads lifted), it becomes an unnecessary layer of complexity to the mechanics of the lift. Changes in movement mechanics should be made when there are obvious gains in performance or a decreased risk to injury.
PRACTICAL EXERCISE 2—CORRECTING MOVEMENT FAULTS

This builds on the skills developed during Practical Exercise 1. The purpose is to work on strategies for correcting movement faults.

Three different cueing strategies will be discussed and practiced (verbal, visual, and tactile cues), as well as practicing acknowledging whether improvement actually occurred after a cue is given.

The drills are not effective as a stand-alone coaching style. The goal is to integrate that skill into a complete coaching method.

SELF-ASSESSMENT

Ability to correct:

<table>
<thead>
<tr>
<th>Needs Improvement</th>
<th>Satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Faults</td>
<td></td>
</tr>
<tr>
<td>Dynamic faults</td>
<td></td>
</tr>
</tbody>
</table>

Ability to:

<table>
<thead>
<tr>
<th>Needs Improvement</th>
<th>Satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritize faults</td>
<td></td>
</tr>
<tr>
<td>Make corrections</td>
<td></td>
</tr>
<tr>
<td>Acknowledge improvement</td>
<td></td>
</tr>
</tbody>
</table>

Which static faults were you inconsistent in identifying?

Which dynamic faults were you inconsistent in correcting?

Which movement(s) did you feel were the most difficult to correct?

Which cueing strategy did you find the most challenging (verbal, visual, tactile)?

What cues did you learn that you found most effective?

What are your primary takeaways from this session? What could you do to improve?
CLASS STRUCTURE

During the Level 2 Certificate Course, participants are led through a mock class from start to finish. It is meant to serve as a basic class template for CrossFit affiliates. Although each example class at the Level 2 Certificate Course is different – from instructors to warm-up drills to workouts – universally themes represent effective coaching practices.

Being a trainer is not about showing up, quickly writing a last-minute workout at the whiteboard, and turning on the music. Real training is about improving each client’s fitness (and by association quality of life) in small, incremental steps in a motivating and positive way. Besides having the presence, attitude and demonstration that develops a positive rapport with one’s clients (see Foundations of Effective Training notes), a large part of improving client fitness is having a plan, both on a day-to-day and long-term basis. This section discusses the basic but necessary components for a trainer to run a single class.

To effectively manage time, trainers need to have a lesson plan. A single class can be outlined as a three-part lesson plan, consisting of:

- Warm-Up.
- Workout.
- Post-Workout.

The total time of the workout helps set the allotted time to the warm-up and post-workout sections. A longer workout means sacrificing time in either or both. Most affiliates run hour-long classes, and this is the length used in the Level 2 example class.

Logistical considerations affect an appropriate workout to select, as well as the time allotted to each component of the class. Factors include gear availability, class size, gym space for equipment and athlete layout, and the experience level of the class. A trainer needs to consider various alternatives, as additional modifications may be necessary “on the fly” depending on which clients, and how many, show up. For example, if the affiliate has limited floor space, it will not take many participants to make it cramped. For safety considerations, a trainer needs to ensure walkable area between all moving athletes and their associated equipment. Dumbbells are a phenomenal tool for athletes: they are great space savers as well as substitutes for barbells in many scenarios. Trainers may also get creative by using sandbags, the outdoors, staggered heats, etc.

Warm-Up

The purpose of the warm-up is to do just that: warm the body to prepare it for more intense activity. Warm-ups often consist of two parts: a general warm-up and a specific warm-up. The primary purposes of a general warm-up are to increase core temperature and blood flow to the muscles, prime the cardiorespiratory system, increase mobility, and move joints through a full range of motion. General warm-ups usually include calisthenic-type movements or movements that involve dynamic range of motion.

The primary purposes of a specific warm-up are to build and refine proper mechanics for the movements used in the workout, and prepare mentally and physically for the challenge. Specific warm-ups reflect the movements used in the workout to best prepare an
athlete for those demands, although potentially different ranges of motion or variations may be used (e.g., power vs. squat variations, medicine balls vs. barbells).

Movements not part of the workout may also be used as the warm-up provides a time to improve deficiencies in any movements (i.e., refine mechanics vs. acquire new skills). This gives clients extra practice time to improve a deficiency and potentially allows for a more “personalized” program. During warm-up and skill sessions, which are often heavily biased toward newer and less proficient athletes, an effective trainer needs to also offer challenging options for the advanced athletes.

For example, suppose a trainer led a warm-up that included a skill session on pistols. Although most of the athletes may be working on getting their first pistol, perhaps using a band or squatting to a box with a support, advanced athletes may be working on weighted pistols (e.g., with a bar in the overhead-squat position). There are examples of how to use warm-ups to implement weakness work on page 38. With well-varied workouts, much of the warm-up can coincide with movement preparation for the workout to practice elements that are usually weak (e.g., handstand push-ups, muscle-ups, double-unders).

Regardless of the movements selected, trainers should be sure to avoid pre-fatiguing the client. The goal of the warm-up is not to make it another workout. An example of this may be doing three rounds of 15 pull-ups, push-ups, sit-ups, squats, and hip extensions before the workout Cindy (as many repetitions as possible in 20 minutes of 5 pull-ups, 10 push-ups, 15 air squats). This is particularly a concern for when a trainer plans a longer skill session before the workout, such as handstand-push-up skill work before the workout Diane (21-15-9 repetitions of deadlifts and handstand push-ups). Such skill work can be done, but the trainer must monitor the volume such that the athletes are not unduly fatigued. Each athlete has variable tolerance to pre-workout volume relative to that athlete’s capacity. The tolerance builds over time, so the warm-up can eventually be more extensive without pre-fatiguing muscles.

There are benefits to both the athlete and the trainer in the warm-up period. The warm-up helps athletes best prepare to better handle the demands of the workout and improve upon deficiencies – whether they are subtle mechanical inefficiencies or larger faults in movements with which the athletes have little experience. The warm-up also provides the trainer an opportunity to assess athletic capacity of individuals specifically for the movements to be used in the workout. This is the time for the trainer to formulate a plan for scaling options. Although the trainer should have some ideas before starting class, seeing the individual needs helps a trainer choose the best options. As discussed in the Effective Program Design notes, scaling should progress with the athletes, and they should be constantly challenged (i.e., they should not just perform the same scale every time a movement or load is outside their current capacity). This is also the time for the trainer to mentally organize any remaining workout logistics (e.g., equipment distribution, equipment layout, heats).

Workout
The time allotted for the workout needs to include the pre-workout brief and the workout execution. The pre-workout brief reviews the movements (including the range-of-motion
standards), as well as the order of movements and the repetition scheme. Especially for newer athletes, workout abbreviations and acronyms on the whiteboard are not self-evident. A trainer needs to clearly demonstrate and emphasize the range of motion and mechanics for every movement before every single workout. This makes it easier to hold athletes to these standards during the workout and cultivate a culture of virtuosity in one’s gym. A trainer may choose to discuss scaling options with the entire class at this time or even review the intended stimulus of the workout. This could potentially include describing the targeted time domain, loading, or skill acquisition. For example, the workout Elizabeth (21-15-9 repetitions of cleans at 135 lb. and ring dips) is a relatively short workout (about 5 min) with moderate loading. A novice CrossFit athlete likely has to reduce the load for the clean to their level of moderate loading (e.g., 95 lb.), and he or she might have to address the dips’ load (e.g., band, bench) or volume (e.g., 12-9-6) to best match the original workout intent. See the Effective Program Design notes for more information about preserving the intended stimulus.

Whether in the pre-workout brief or the specific warm-up, time should be allotted for athletes to practice the exact standards to be used in the workout. If the movement is loaded, additional time is needed for athletes to work up to an appropriate load under the discretion of the trainer.

Once the workout begins, the demands on a trainer’s coaching abilities increase. Coaching is not about repetition counting, cheering, or selecting music. It is about appropriately applying threshold training, which means pushing an athlete’s intensity while maintaining sound mechanics. This balance is what helps minimize the risk for injury but also keeps the intensity high to drive progress. Deviations in mechanics are inevitable as athletes try to move fast to complete the workout. A trainer must attend to each client, using as many different cueing strategies as possible and offering encouragement and reinforcement of sound mechanics throughout the workout. A trainer may find that he or she actually has to slow an athlete down, and/or lower the load if no improvement in mechanics is seen in multiple repetitions. Movement change is not reserved for the warm-up: a trainer is expected to make better athletes in the workout.

There are benefits to both the athlete and the trainer during the workout. For the athlete, this is obvious in increased fitness adaptations from adding speed and load. In addition, he or she should be receiving feedback from the trainer on how to improve and refine movement. The trainer benefits in this scenario by developing seeing and correcting skills in a faster, less controlled environment. The ability to deliver actionable and effective cues for better movement improves with experience while coaching under high intensity. It is a practical learning session focused on effective coaching strategies related to both the athlete’s mechanics and motivation.

Post-Workout
The main purpose of the post-workout period is to aid in recovery, allow individuals to regain mental acuity, cool body temperatures, slow heart rates, catch breaths, and facilitate full range of motion of the joints (i.e., regain homeostasis). The trainer may also have some secondary goals for this period, such as additional skill work or fitness challenge, education for the athlete, and preparation of the space for the next class. Regardless, a proper post-workout leaves clients prepared for the rest of their day, capable and eager to
return, and full of an appreciation for his or her accomplishments.

Some examples of possible post-workout elements are described herein. Generally, the post-workout should begin by just allowing the athletes to rest for a few minutes. While the athletes are warm and pliable, the post-workout is an excellent time to stretch or do foam rolling, especially to the areas that were taxed heavily. This can help aid recovery, reducing soreness while potentially gaining new range of motion. A trainer may leave this as an open period, allowing members to choose which drills are best for them. A trainer-led session, however, ensures everyone has direction, attention, and motivation.

A trainer may choose to include skill work at the end of a workout. This can include a review of the movements used, especially to correct errors that may have presented themselves during the workout. Using reduced speed and load, the trainer can reinforce sound movement mechanics before the athlete leaves. If a trainer filmed the athlete’s movement during the workout, this period can include video playback to review his or her technique. It is also possible to work on a totally unrelated skill. While practice is more difficult after a workout due to fatigue, this is precisely why attempting new skills here can be beneficial (heightened neurological adaptations due to muscular fatigue).

A post-workout may include a “finisher” – an impromptu fitness test such as a maximum set of pull-ups, a handstand walk, rope climbs – anything. It can be part of an ongoing record or a competition, and it can be used as a motivational event or to reinforce the unknown and unknowable nature of life’s challenges. For example, finishers may be grouped into teams or partners, or the challenge can be structured so one or two athletes compete at a time and the rest of the class can cheer. As in a warm-up, a trainer needs to be mindful that finishers do not become a second workout, nor do they have to be part of every class.

A trainer can use the post-workout period to ensure the athletes are recording their workouts. Especially on benchmark days (including strength days), the trainer should encourage members to write down their times, repetitions, loads, and scaling or modifications. The trainer should also be able to tell the members the last date the workout was completed for comparison.

Finally, a trainer can use this time as an educational opportunity to talk about nutrition, programming, scaling, “What is Fitness?” “What is CrossFit?” etc., all with the intention of creating smarter athletes.

For the trainer, the post-workout period gives him or her time to survey clients and look for mental faculties and visible signs of injury or physical distress. A trainer needs to pay attention to verbal and nonverbal cues that a client’s welfare may be under duress. This is also a time for the trainer to engage in conversation with clients by offering encouragement and feedback on their performance and ask them about their body’s response. This provides valuable information about the trainer’s programming. These small connections also lay the groundwork for building a strong community and relationships with one’s members. The post-workout period is an often overlooked or rushed section of class, but it is valuable time a trainer should use wisely.

To be effective in each class, not only does a trainer have to have capacity in all six areas
discussed in the Foundations of Effective Training notes, but one must also have a plan. This plan covers all aspects of the class time to best improve one’s athletes with each training session, while keeping them safe and excited to return for the next day. After each session, an informal review and critique of one’s own performance as a trainer can help the trainer better prepare for subsequent sessions.
EXAMPLE LESSON PLANS

THURSDAY 010815

WOD

BACK SQUAT
5-5-5-5-5

| WORKING TIME 35 MINS | (Approx)

START @ 12:15

SQUAT THERAPY @ 12:05

INTRO SQUAT THERAPY
+ EXPLAIN EXACTLY “HOW” THIS
SHOULD BE EXECUTED

3 MINS

PREPARE STATIONS
BEFORE CLASS

ATHLETES COMPLETE 10-20 REPETITIONS IN SETS OF 2
(7 MIN; REST BRIEFLY BETWEEN SETS).

WOD BRIEF @ 12:15 - 12:20

EXECUTION
FORMAT / FLOW
SAFETY

WARM UPS
FIRST WORK SETS
STRAIGHT OR
ASCENDING SET

5 MINS

BAILING
NO SPOTTING

ENSURE PLATFORM IS CLEAR

WORK SETS: 12:20 - 12:50

* FOCUS TODAY
- TAKE 3-5 MINS BETWEEN
 WORK SETS TO MAXIMIZE LOAD LIFTED
 - TECHNIQUE / PRACTICE

* MECHANICS
- UNDERSTANDING DURING THE
 INITIATION (HIPS, TRUNK & KNEES)

AFTER PARTY @ 12:50

STRICT
- RING DIPS
- PULL-UPS

Accumulate 30 reps of each
OR

Work on ‘positioning’,
technique or different
pieces / progressions.

- Negatives
- Static Holds
- Bando
MONDAY 090715

WOD

4 ROUNDS

3 MIN AMRAP
6 DL (115/75)
4 HSC (115/75)
2 BOX JUMP OVERS

REST 1 MIN

SCORE (TOTAL REPS)
1 ROUND = 12 REPS

TIMELINE

0-3 → INTRO/INJURIES
3-10 → GENERAL WARM-UP
 JUMPING ROPE WITH CALISTHENICS
 MAX DOUBLE UNDERS LAST 2 MIN
10-12 → BARBELLS SET-UP
12-20 → BARBELL TECHNIQUE AND LOADING
20-23 → BOX SET-UP
23-27 → PRACTICE BOX OVERS
30-45 → WOD
45-50 → CLEAN-UP
50-60 → COOL DOWN: STRETCH HIP FLEXORS AND HAMSTRINGS
 (1 STRETCH EACH, 2 MIN EACH SIDE)

BARBELL TECHNIQUE

TALL POSITION
• Shrug
• Shrug elbows
• Muscle Clean
• Front squat
• Tall Clean

HANG POSITION
• Shrug
• Shrug elbows
• Hang squat clean
• Deadlift

COMPLEX
• 6 Deadlift
• 4 Hang squat clean
• Add loading as able to working weight

WOD FOCUS
- FULL ROM, ESP AT TOP (DL)
- TIMING (HSC)
- JUMP FROM HEELS (BJO)

ROOM SET-UP
EXAMPLE WARM-UPS TO ADDRESS WEAKNESSES

- These are a few examples of warm-ups by modality (weightlifting, gymnastics, monostructural) and can be used to add skill work to a client’s program.
- Warm-ups should not be thought of as a separate workout, but rather an opportunity to touch on skills that may or may not be present during the day’s main workout.
- The warm-ups below are progressive in nature, meaning that they are performed for 2-3 rounds each, with each round getting slightly more complicated than the round before.
- Each movement is performed for 5-15 repetitions; the repetitions should be chosen as to give enough time to practice the movement, but not so much as to fatigue the individual for the workout.

WEIGHTLIFTING COMPLEXES (CHOOSE ONE)

Barbell Complex Warm-up
Round 1: Deadlift, hang power clean, front squat, press, thruster
Round 2: Deadlift, hang power snatch, overhead squat, snatch

Dumbbell
(Can be performed with one or two dumbbell(s) at a time)
Round 1: Deadlift, hang power clean, front squat, press, thruster
Round 2: Deadlift, hang power snatch, overhead squat, snatch, Turkish get-up

Kettlebell
(can be performed with one or both kettlebells or with hand-to-hand techniques)
Swing, clean, clean and press, snatch, Turkish get-up

GYMNASTICS COMPLEX (CHOOSE ONE)

Rings
(Create a mini routine by going through the list. Omit the more difficult variations until skilled enough)
- Tuck to inverted hang, then skin the cat
- Pike to inverted hang, then skin the cat
- Strict muscle-up to support to L-sit
- Shoulder stand back to L-support or straddle support
- Forward roll back to L-support
- Forward roll to hang
- Pike or tuck to inverted hang to back lever attempt, pull back to inverted hang
- Front lever attempt
- Ring swings
- Fly-away dismount (skin the cat and let go)

Parallettes
(Create a mini routine by going through the list. Omit the more difficult variations until skilled enough)
- Push-up/Dive bomber push-up
- Shoot-through to push-up to frog stand
• L-sit pass-through to tuck planche
• L-sit pass-through to shoulder stand
• Tuck up to handstand/press to handstand (from L or press from bottom of shoulder stand)
• Handstand pirouette walk

Basic Bodyweight (BBW)
• Round 1: Squat, push-up, sit-up, pull-up (strict), back extension
• Round 2: Lunge, dip (strict), V-up, kipping pull-up, hip extension
• Round 3: Pistol, handstand push-up, toe to bar (straight leg and strict), muscle-up (strict), hip and back extension
• Round 4: Pose running drill

Below is an example programming template to help ensure variation and consistency using these warm-ups.

Example Warm-Up Programming Template

<table>
<thead>
<tr>
<th>Warm-up</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up</td>
<td>W (Barbell)</td>
<td>G (Rings)</td>
<td>BBW</td>
<td>W (Dumbbell)</td>
<td>G (Parallettes)</td>
<td>BBW</td>
<td>OFF</td>
</tr>
<tr>
<td>Workout</td>
<td>M</td>
<td>GW</td>
<td>MGW</td>
<td>G</td>
<td>WM</td>
<td>GWM</td>
<td>OFF</td>
</tr>
</tbody>
</table>
TEACH BACK 1—ONE-ON-ONE COACHING

The instructors only provide feedback on a couple areas, such that you should not expect to have a comprehensive evaluation of strengths and areas of improvement for each area below. Spend some time reflecting on your own coaching, as well as considering the feedback given to others, to critically evaluate areas not specifically addressed by the instructors.

Movement Taught: __

What did you do well in the following categories?

- Demonstration

- Teaching

- Seeing

- Correcting

- Group Management

- Presence and Attitude
What do you need to work on in the following categories?

- Demonstration
- Teaching
- Seeing
- Correcting
- Group Management
- Presence and Attitude

What is your goal to improve in the group coaching session tomorrow?
LEARNING OBJECTIVES

At the completion of Day 2, participants will be able to:

1. Exhibit and assess effective presence and attitude
2. Identify and demonstrate essential qualities of an effective trainer
3. Describe strategies for designing a program and evaluating its effectiveness
4. Evaluate the group management skills of a trainer
5. Evaluate individual's athletic capacity and be able to scale workouts to the appropriate level as needed.
TEACH BACK 2—GROUP COACHING

The instructors only provide feedback on a couple areas, such that you should not expect to have a comprehensive evaluation of strengths and areas of improvement for each area below. Especially on Day 2, the instructors are looking to provide feedback on a specific area that was a weakness of Day 1. Spend some time reflecting on your own coaching, as well as considering the feedback given to others, to critically evaluate areas not specifically addressed by the instructors.

Movement Taught: __

What did you do well in the following categories?

• Demonstration

• Teaching

• Seeing

• Correcting

• Group Management

• Presence and Attitude
What did you need to work on in the following categories?

- Demonstration
- Teaching
- Seeing
- Correcting
- Group Management
- Presence and Attitude

Were you able to apply feedback effectively from yesterday in today’s session?
What did you do differently?
EFFECTIVE PROGRAM DESIGN

CrossFit is defined as “constantly varied functional movements executed at high intensity,” with the goal to develop fitness that prepares one optimally for any task imaginable. The programming material of the Level 1 Certificate Course outlines workout variables and basic considerations for structuring workouts. The programming material at this course builds on that foundation by focusing on long-term program design for individuals and groups.

Among the myriad variables to control when programming workouts, a trainer cannot lose sight of the small influence programming has among a host of other factors that determine a client’s success. Programming, whether “good” or “bad,” is secondary to effective coaching, appropriate scaling, using sound mechanics, and a group dynamic conducive to pushing oneself (i.e., highest intensity brought to the work). Even with less-than-optimal programming, a trainer with a good eye for movement mechanics, and who develops a good rapport with his clients, will help clients improve their fitness for years. Functional movements performed at high intensity, regardless of how well they are combined and varied, are powerful enough to elicit dramatic changes in one’s health and performance, particularly for the unaccustomed. Therefore, trainers can spend more focus on his or her coaching skill set and member rapport instead of striving beyond reason to create the “perfect” template and programming cycles.

ANALYZING PROGRAMMING FOR EFFECTIVENESS

Effective – or “good” – programming produces results, and the relative degree to which programming is effective is the degree to which it optimizes fitness. The standard by which to evaluate any programming is measurable improvement in performance markers. For a CrossFit athlete, results would be increased loads on heavy days, decreased times on task-priority workouts, and increased repetitions or rounds on time-priority workouts. An optimal program would see the maximum possible increases in any test of fitness.

Other measurable markers include health markers. Faster Fran times, more rounds of Cindy, and heavier one-repetition-maximum clean and jerks are correlated with decreases in blood pressure, triglycerides, and resting heart rate. Additional “results” may be reported by clients, such as improved quality of life, improved confidence, increased energy, and mood alteration. Anecdotal improvements in quality of life are side benefits of CrossFit. While not measurable, they are valued by many clients over the metrics of improved workout statistics and health markers.

Ineffective programming does not produce results, or at least not to the same degree possible with effective programming. These suboptimal results could be decreased performance on benchmark workouts or even modest improvements in performance markers, or even a higher rate of injury, that could be easily surpassed by following other programming.

The key is that “effective” is based on results: real changes in measurable, observable, repeatable markers. Clients need to get results for the programming to be determined effective.
For trainers programming for a group or an entire affiliate, they can simply use the same measurement applied across the entire gym population. A trainer can look for long-term trends and patterns in the group by assessing performance on select benchmarks. For example, a trainer may select benchmarks as follows: one-repetition-maximum snatch, one-repetition-maximum back squat, Grace, Fran, Tabata Squats, run 1 mile, JT, Fight Gone Bad, row 5 km, and Cindy as his or her fitness tests. An evaluation does not have to include these exact workouts: any group of workouts the trainer considers a good representation of fitness can be used. As long as the majority of members are improving their scores on these days, the programming is effective. A trainer must remember that this is a long-term view, and he or she cannot expect everyone to set a personal record (PR) with every benchmark test due to variables beyond his or her control, such as mood, sleep, stress, the physiology of the athlete, and even the athlete’s commitment to the program.

Intermediate to advanced athletes, for example, cannot expect to set personal records every time they repeat a workout due to the decreased magnitude of adaptations that result from increased proficiency (i.e., the learning curve).

VARIANCE IN CROSSFIT PROGRAMMING

Variance is the intended variation of functional movements, loads, repetition schemes, and time durations, within a single workout and across a series of workouts, to best maximize one’s fitness. Other factors (e.g., environment, gear) can be varied but are not the primary variables to consider. The variation of workout variables across months and years determines how well one is prepared for any conceivable test of fitness. A program with a narrow focus may show great results in one area but have little impact on another. For example, a powerlifting program may see increases in strength and power for certain lifts, but it might produce worse performance in longer-duration, higher-repetition scenarios or even decreased strength and power in certain other lifts, like the snatch.

In the name of variance, there are few absolutes for formulating the infinite combinations of workout variables. An error in programming variance is only problematic when the error becomes routine. Today’s workout does not have a dramatic impact on one’s fitness; it is the series of workouts that result in long-term change. Programming too many heavy days in a row, for example, develops a narrow capacity. Conversely, programming a few heavy days back-to-back on occasion may be an entirely appropriate or beneficial stimulus.

Long-term planning and routine assessment

Effectively combining workout variables over the long term requires intentional and careful planning. The programmer must be well versed in CrossFit methodology to understand similar and disparate stimuli, as well as which stimuli are the most potent. Programming requires reviewing what has been completed recently in an attempt to provide new variance. It must also allow for routine assessment to ensure progress is occurring.

To a lesser degree, the programmer must understand each athlete’s current capacity and weaknesses. For any level of athlete, a well-varied program should cover many different aspects of fitness. As an athlete becomes more advanced (e.g., CrossFit Games competitor), additional time may be needed improving weaknesses in additional to regular
CrossFit programming. Regardless, effective programming cannot be random. Although CrossFit programming appears random to some due to its non-linear and non-formulaic pattern, its variety is a result of a planned attempt to address all fitness tests. This does not happen by the luck of the draw.

CrossFit.com programming

The CrossFit.com site provides a great expression of variance for general physical preparedness. An athlete who can perform all main-site workouts as prescribed (Rx’d) has a robust fitness capacity. Across all the workouts on CrossFit.com, some very broad trends suggest some combinations are more useful than others to develop this level of fitness. CrossFit more frequently programs whole-body, natural, high-power movements in short, intense workouts because of their far-reaching effects on one’s overall fitness. These principles are generally expressed in task-priority couplets and triplets of 15 minutes or less, which include full-body, high-power movements utilizing complementary functions (e.g., pulling vs. pressing). This simple, but highly effective — i.e., elegant – programming drives CrossFit’s potency. A programmer cannot be fooled into believing the simplicity of the movements and combinations equates to “simple” results. Complexity does not inherently produce greater efficiency or efficacy, and arguably it detracts from both.

Classic CrossFit benchmark workouts such as Fran, Helen, Diane, Elizabeth, and Fight Gone Bad are all excellent examples of these basic principles. Fran (21-15-9 repetitions of thrusters and pull-ups) is an elegant combination: two full-body movements, complementary in function (lower-body push and upper-body pull) to allow intensity to remain high while simultaneously expressing functions necessitated by life (squatting, putting an object overhead, pulling the body up).

CrossFit programming is best summarized in World-Class Fitness in 100 Words, by CrossFit Founder and CEO “Coach” Greg Glassman — “Practice and train major lifts: Deadlift, clean, squat, presses, C&J (clean and jerk), and snatch. Similarly, master the basics of gymnastics: pull-ups, dips, rope climb, push-ups, sit-ups, presses to handstand, pirouettes, flips, splits, and holds. Bike, run, swim, row, etc., hard and fast. Five or six days per week mix these elements in as many combinations and patterns as creativity will allow. Routine is the enemy. Keep workouts short and intense. Regularly learn and play new sports.”

Although many CrossFit workouts follow these trends, not all should. Less frequently, athletes need to be exposed to workouts that are more unorthodox. For example, there are times when workout variables that result in decreased power output are entirely beneficial for an individual. A load that may be too heavy for an athlete to move continuously in a workout is also a stimulus for greater strength. A high-repetition scheme that causes the athlete to stop multiple times in a single set is a stimulus for greater stamina. Even using lower-powered movements such as a Turkish get-up in a workout are useful occasionally for developing greater coordination, balance, and shoulder strength under cardiorespiratory stress. The bulk of workouts, however, should strive for simple, bold pairings.

An example review of a month of CrossFit.com programming provides such insight. Here are some summary statistics for the month of December 2013 (on 49):

- 23 workouts in 31 days.
- 5 heavy days, which means a heavy day occurred about once every four workouts.
• 19 workouts were in the 15-minutes-or-less range in actual work time (including heavy days).
• 11 couplets and triplets and 8 single-modality days (including heavy days), which comprise 83 percent of the workouts.
• 10 benchmarks (not including heavy days): 1 Girls; 3 Heroes; 15 repeat workouts (i.e., previously posted on CrossFit.com).
• Of 18 metabolic-conditioning workouts, 13 were task priority.

Consider using this month of programming for the athletes at an affiliate. This programming simultaneously addresses weaknesses in athletes’ strength, endurance, gymnastics skills, and flexibility, among others. Some trainers and athletes believe they need something extra or special instead of the type of programming seen CrossFit.com to close the gap between beginner/intermediate levels and advanced capacity seen in CrossFit Games competitors. However, the overwhelming majority of clients are not in need of a specific program. They are in need of a well-varied program that improves everything: they are in need of fitness. There is no shortcut for that. More so than a specialized program, consistency is key. While CrossFit produces broader results more quickly than all other fitness programs, the adaptations continue over years.

The sample month of CrossFit.com programming also addresses concerns for clients with set schedules. For example, if a client only attends on Fridays and Saturdays, a trainer who always programs strength days on Tuesdays denies this client the chance to experience them. Rotating strength days, endurance days, skill days, etc., across the weeks remedies the problem, exposing all clients to the desired stimuli in the long-term.

CrossFit.com programming demonstrates effective variance by:
• Not following a set pattern for which days certain elements occur;
• Including all movements regardless of skill;
• Allowing ample opportunities for assessment;
• Creating simple, short, high-intensity pairings.

CrossFit trainers should emulate these characteristics in their own programming.

TEMPLATES FOR VARIANCE
A programming template outlines a schedule for how and when certain elements are addressed. Programmers can use templates to help apply and ensure variance effectively while adhering to the guiding principles discussed with regard to CrossFit.com.
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REST</td>
<td>2</td>
<td>3 legless rope climbs, 15 ft</td>
<td>49</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>REST</td>
<td>2</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5 RFT</td>
<td>20 GHD Sit-ups</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>REST</td>
<td>5 min AMRAP</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5 min AMRAP</td>
<td>3 Deadlift (275)</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>REST</td>
<td>10 min AMRAP</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5 min AMRAP</td>
<td>7 Push Press (155)</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>REST</td>
<td>5 min AMRAP</td>
<td>5</td>
<td>5 RFT</td>
<td>5 RFT</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes:
1. Weight (in pounds/poods) or height (in inches (")) is listed in parentheses after a movement.
2. Weightlifting days follow the format sets x reps.
3. Abbreviations used: AMRAP (as many rounds as possible), BJ (box jump), C&J (clean & jerk), C2B (chest-to-bar pull-ups), DB (dumbbell), ft (feet), GHD (glute-ham developer), HSPU (handstand push-up), k (kilometer), KB (kettlebell), KBS (kettlebell swing), m (meter), min (minute), pd (pood), RFT (rounds for time), SDHP (sumo deadlift high pull), sec (seconds), T2B (toe-to-bar).
In February 2003, Coach Glassman published “A Theoretical Template for CrossFit’s Programming” in the CrossFit Journal. It is an excellent introductory article in which Coach Glassman outlines a basic rotation building off the three major movement modalities (categories):

- Gymnastics (G): Controlling one’s body only.
- Weightlifting (W): Moving or manipulating an external object.
- Monostructural metabolic conditioning (M): Repetitive, cyclical movements that can be continued for long periods of time. Traditional “cardio” movements.

Each three-day cycle follows this pattern: Day 1 is a single-element workout using only one movement category; Day 2 is a couplet that uses the other two modalities not used on Day 1; and Day 3 is a longer triplet that incorporates all three movement categories. A rest day is programmed on Day 4, and the next cycle begins with a new single-modality effort from a different category. An example of this template is shown in Figure 1. This article and the template variations within it provide an excellent resource for those interested in programming, and it should be revisited and studied. Once the concepts presented therein are understood, experimenting with one’s own templates can be a creative way to program.

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>GW</td>
<td>MGW</td>
<td>OFF</td>
<td>G</td>
<td>WM</td>
<td>GWM</td>
</tr>
<tr>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
<td>Day 4</td>
<td>Day 5</td>
<td>Day 6</td>
<td>Day 7</td>
</tr>
<tr>
<td>W</td>
<td>MG</td>
<td>WMG</td>
<td>OFF</td>
<td>M</td>
<td>GW</td>
<td>MGW</td>
</tr>
</tbody>
</table>

Figure 1. An example template by modality.

Instead of basing the schedule on modality, another basic template that can be based on the duration of the effort. For example, suppose the following categorical durations were used:

- Sprint = 5 minutes or less of total effort. This can include short interval work as well as maximum-effort strength training.
- Short = 6-12 minutes of effort.
- Moderate = 13-20 minutes of effort.
- Long = More than 20 minutes of effort.

An example of this template is shown in Figure 2. This example is based on a 6-on-1-off schedule, but any weekly work-to-rest schedule can be used. It is possible to re-order the durations within every cycle to avoid always progressing from short-duration sprints to long efforts.
This template can be combined with the template by modality to create another layer of guidance. This may be an asset or a hindrance depending on the trainer's style and programming preference. Complexity is not necessarily better! Also, some combinations may not be suitable (i.e., a "sprint" day that uses a GWM triplet or a "long" day that is scheduled to be a "W" only day), so the trainer must use his or her discretion and make adjustments as needed.

A good template gives enough structure to the program while leaving freedom for the trainer to create unique individual workouts and adapt to the athlete's needs. As Coach Glassman said, “Every regimen, every routine contains within its structure a blueprint for its deficiency.” This means that a trainer cannot be so tied to a template such that he or she does not see weaknesses of the template or his athletes. Once a weakness in the programming is identified, steps must be taken to remove it.

There is a reason why Coach Glassman's original template was called “theoretical.” There is an art to programming, and the trainer has to observe and adapt to the myriad factors that present themselves when training others (i.e., recovery, scheduling, interest, progress, etc.).

Trainers may use templates as jumping-off points, assessment tools, or as a programming method, but continual assessment of clients’ results should guide the intelligent use of a template.

OPTIMIZING CROSSFIT PROGRAMMING

Most every client can improve his or her fitness without individualized programming. Small adjustments in the context of regular CrossFit programming, such as weakness work and scaling workouts appropriately, can accelerate a client’s results within general group programming.

Working Weaknesses

A weakness is a certain skill that is lacking relative to an athlete’s proficiency in other areas. By improving one’s capacity in these weak areas, the athlete’s overall fitness increases. Effective CrossFit programming by itself is weakness development. With well-varied, unbiased combinations of loads, time durations, movements, etc., clients inevitably see improvements in their fitness for years. Over the months and years, just performing the elements one struggles with will improve one’s proficiency in these movements.

An athlete may choose to do additional weakness work to accelerate progress and will likely find this also improves strengths. It is also a good consideration for a client that has

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprint</td>
<td>Short</td>
<td>Moderate</td>
<td>Long</td>
<td>Sprint</td>
<td>Short</td>
<td>OFF</td>
</tr>
<tr>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
<td>Day 4</td>
<td>Day 5</td>
<td>Day 6</td>
<td>Day 7</td>
</tr>
<tr>
<td>Moderate</td>
<td>Long</td>
<td>Sprint</td>
<td>Short</td>
<td>Moderate</td>
<td>Long</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Figure 2. An example template by duration of effort.
reached a plateau. Coach Glassman has asserted the following: “There is more traction, more advantage, more opportunity in pursuing that one thing that you don’t want to see come out (of the Hopper) headlong than to put more time into that thing you’re already good at. That thing that you don’t want to see come out is a chink in your armor. And addressing it will make a difference for you in ways that you’ll never be able to predict.”

It is unlikely that the programming needs to change drastically to address weaknesses, particularly for an affiliate or large group setting. Further, trying to tailor the program to every individual weakness is impossible. The best the trainer can do is to observe and respond to the general trends in the gym and provide well-varied programming consistently.

Constant assessment is needed to ensure that too much capacity is not lost in the strong areas. When assessment has shown that the weak areas are now at an acceptable level, the trainer should look to identify the next area of weakness and make small adjustments accordingly. A radical change in programming is likely to eliminate the positive benefits experienced elsewhere (e.g., it becomes too skewed toward the new goal).

If the programming becomes too skewed to work on specific elements, then it is biased. Biasing is programming certain elements more frequently regardless of current capacity in those areas. The result of biasing does not necessarily result in an increase in fitness. Biasing results in an increase in a specific capacity. Biasing is not necessarily a negative thing if it serves the athlete’s preference or goal. It is only a problem when the athlete is seeking a general fitness and continues to follow a biased program. Addressing weaknesses may eventually become a bias in the absence of assessment.

Scaling Effectively

Scaling workouts appropriately for one’s clients is an essential consideration to best increase their fitness. This is not just a concept for beginner clients; an effective trainer progresses the most athletes toward completing workouts as prescribed across months and years.

To scale effectively, a trainer needs to review the original workout for its intended stimulus, to include:

- movement functions
- loading parameters
- timeframe
- volume of repetitions

This does not have to be a formal process, but it helps identify appropriate scaling options.

Suppose an affiliate decided to post the workout Amanda (9-7-5 repetitions of muscle-ups and 135-lb. snatches) for its daily classes. This is a workout most members at most affiliates have to scale. The basic analysis of the workout variables shows:

1. a high-skill gymnastics movement that is an upper-body pull and push and a high-skill weightlifting movement that is predominantly a lower body pull and squat
2. the intended loading is moderate
3. the intended time is short (approximately 5 minutes)
4. the volume is low

The goal for scaling this workout is to adhere to as many of these variables as possible in light of the individual’s capacity. The resulting scaled workout still needs to provide each client with a significant challenge. There is not single strategy that works in every situation. Scaling is also a “moving target” as individual capacities change overtime.

There are some populations for which a trainer can employ common scaling strategies:

1. beginners and/or deconditioned individuals;
2. intermediate athletes;
3. advanced athletes; and
4. injured athletes.

Scaling guidelines, and examples for the workout Amanda, are detailed below.

Beginners and/or deconditioned individuals are generally those athletes who have been doing CrossFit for six months or less. For beginner and/or deconditioned individuals, a trainer needs to be primarily concerned with adherence to the proper points of performance of the movements throughout the full range of motion. Increasing the difficulty (via movements or volume) and/or pushing for greater intensity (via speed or load) are secondary to developing movement proficiency and new skill development. This group may often include the elderly, where additional safety concerns may be necessary (e.g., keeping feet on the floor). Beginners need a lot of guidance: the trainer must be proactive about approaching them and modifying the workout.

Loads, distances, and repetitions are the primary variables to modify during scaling, particularly before changing the movement. If a movement is beyond the athlete’s current abilities, a substitution should create a similar movement function and range of motion. In some cases, preserving function and range of motion can be done by using several movements to achieve a similar effect. Also, it is not “standard” to increase the volume of the substituted or “less challenging” movement. For example, it is not necessary to always make those substituting single-unders for double-unders complete two or three times the repetitions. This group often needs reduced volume, even with a substituted movement.

For the workout Amanda, scaling options for beginners/deconditioned individuals include:

- Squat snatch load. Reduce to whatever allows them to best practice the movement with full range of motion. This may be a training bar, empty barbell, or even PVC pipe. If the athlete has to go very light to preserve movement mechanics, consider doubling the repetition scheme. This gives them more practice repetitions, which is the primary concern for the inexperienced. It is also possible to reduce the range of motion in a loaded scenario if the mechanics cannot otherwise be preserved. Regardless of the scaling choice, the workout should provide some challenge across the repetitions.

- Muscle-up movement. Replace with a simple upper-body pull and push. Most likely, this will be jumping pull-ups or ring rows, and squat-assisted dips, bench dips or push-ups. These options are mechanically simple relative to the muscle-up, so a
trainer needs to pick an option that provides a challenge to their upper-body strength across the total repetitions.

Although not an exact guideline, the term “intermediate athletes” generally describes those who have been doing CrossFit for six months to three years. An intermediate athlete is one who can perform some workouts as prescribed but still struggles with more complex movements or challenging repetition schemes and loads. Scaling the repetitions on some gymnastics movements and the loads on some weightlifting movements is the main priority. A trainer must be mindful that an intermediate athlete is best served by using different scaling options each time a particular movement or load appears in a workout. A trainer can create several different options for intermediate athletes, not only to avoid boredom, but also to help them continue to develop their fitness. Varying the manner in which a workout is scaled reduces the timeframe to acquire the desired adaptation.

With time, intermediate athletes should be able to adequately scale their own workouts. This comes with a better understanding of workout goals and their own strengths and weaknesses. Intermediate athletes may be incorrectly neglected at times because they require less guidance than the beginner. Nevertheless, the majority of one’s members will likely be intermediate athlete with a wide range of abilities. These athletes still need to be pushed to new levels as appropriate.

For the workout Amanda, scaling options for intermediate athletes include:

- **Squat snatch load.** Intermediate athletes often include individuals who should stay at the prescribed weight and potentially take longer to complete the workout. Although their power output may be lower than if the load was scaled, keeping the load prescribed helps develop exactly the strength and stamina needed to perform the workout in a more competitive time. In cases where this load would not be completed in any realistic timeframe (i.e., more than 20 minutes), reduce the load appropriately.

- **Muscle-up movement.** The scale is best when it is specific to the weakness, and it therefore does not take on one specific form. If they have significant upper-body capacity in pull-ups and dips, an effective scale would be to work a transition drill, as that is where their capacity is lacking (i.e., helps strengthen a greater range of motion at the shoulder). Conversely, an intermediate athlete who struggles with pull-ups and dips may be better served using those movements in the workout to develop the pushing and pulling stamina and strength of the upper body. Depending on proficiency, perhaps the repetitions of pull-ups and dips should be increased. If there is an athlete who has muscle-ups but is not consistent with them or cannot perform a high volume, reducing the repetitions is a viable option to help train the skill in a mixed-modal environment (e.g., repetitions of 5-4-3).

Advanced-level athletes are those that can perform all workouts and movements as prescribed. Typically, these athletes either came to CrossFit after years of performing some functional movements at high intensities (e.g., collegiate gymnast) or they have been doing CrossFit consistently for years. There are times a trainer needs to scale this athlete due to sickness, injury, personal problems, or a recent string of difficult/demanding workouts. Occasionally suggesting a variation with lower loading and/or repetitions benefits the advanced athlete both physically and/or mentally.
There may be an occasion to “scale up” an individual: if the athlete is not challenged by
the repetition scheme or weight or is in need of a different stimulus for skill development.
The obvious options are to increase load or repetitions, choose different equipment
(dumbbells vs. barbells), or make a movement more difficult (parallette vs. regular hand-
stand push-ups). A trainer needs to be wary of this practice and should avoid consistently
making workouts heavier and higher in volume to provide a “challenge.” More often than
not, the advanced athlete needs to be coached to better movement mechanics and/or
greater intensity before making a workout “harder.” An effective trainer needs to focus
on fixing movement inefficiencies and pushing for faster speeds before increasing the
weights and repetitions. These corrections translate to seconds of gain in performance.

Some potential scaling options for an advanced athlete in Amanda are listed below.
There are infinite ways to tweak the workout based on needs and relative strengths and
weaknesses of the athlete. These would be good options particularly when an advanced
athlete already has a competitive Amanda time.
- Snatch. The snatch may be made heavier, it may become a power variation, it may be
 replaced with heavy dumbbells, etc.
- Muscle-up. The muscle-ups may become bar muscle-ups, strict muscle-ups, weighted
 muscle-ups, muscle-ups to forward rolls, etc.

The fourth category of participants is the injured athlete. These individuals should be
encouraged to participate in the workout, as there is benefit to training even in their
reduced capacity. There is a positive hormonal response from exercise, which can affect a
multitude of factors from body weight to recovery to mental state. Although the nature of
injury determines what is possible, the goal is still the same: replicate all workout variables
as closely as possible.

Pain-free range of motion is the main guideline. Where the movement cannot be per-
formed exactly, a trainer should find a substitute that best replicates the basic function
and/or range of motion. However, any movement that still relies primarily on the injured
joint/body part should be used cautiously, if at all. A trainer may need to get creative
at times to accomplish this in order to avoid boredom and still working for new skill
acquisition.

Single-limb work can be utilized: contrary to the belief that this results in a problematic
muscular imbalance, exercising the non-injured side can reduce atrophy in the injured
side. Dumbbells are a perfect tool for one-sided work, and the number of repetitions can
increase in cases where the loading is limited. However, this should not be the only option
for someone with an injured limb. If an exercise involves two movement functions, they
may still be able to perform one with both sides. For example, in a thruster, an athlete with
an injured upper body might still be able to squat or front squat. If he or she has an injured
lower body, the athlete might still be able to press or push press. If there are no reason-
able options for an injured person to perform a similar movement, omit the movement or
substitute something else. This should be the last option that is considered.

Using the workout Amanda as an example, scaling options for injured athletes would take
on many different forms depending on the injury. Here are a couple of examples:
- Suppose the athlete’s shoulder is injured such that he or she cannot support any load
with one arm. Potentially the snatch becomes a heavy dumbbell snatch on the good side, or it could become a 135-lb. back squat; the load could even be increased to be more challenging in the 9-7-5 repetition scheme. The muscle-up may become a one-arm ring row and push-up or dumbbell press.

• Suppose the athlete’s knee is injured such that he or she has limited flexion. The snatch may become a one-arm ring row and push-up or dumbbell press.

When the injured side is cleared to be used again, the trainer must increase intensity very gradually, with a heavy emphasis on maintaining optimal mechanics to prevent additional injuries.

Implementing Scaling in a Class Environment

After a trainer has analyzed the workout and knows what is likely to need scaling (especially movement substitutions), direction must be given to the entire class to help each individual to the appropriate modification. While this can be difficult in a busy class setting, a lot of scaling confusion can be prevented when the trainer introduces the workout to the class by indicating the intended stimulus or goal of the workout. Loading, repetition, time, and movement considerations can be discussed.

Presenting several scaling options at this time can help keep the class moving. Some gyms present set scaling options that keep large groups organized. This is fine, but a trainer must also recognize that the best choice for some athletes may be an entirely different option. An experienced trainer should have no problem creating unique scaling options as necessary without taking away from class instruction and group cohesion.

The trainer also needs to observe clients as they increase loads and practice the movements in preparation for the workout. An effective trainer can quickly see if the movement loading and repetition scheme chosen for the workout is appropriate by watching warm-up sets. There are times that scaling may have been assessed incorrectly and a trainer needs to scale after the workout has begun. If an athlete is struggling too early in the workout and will not achieve the desired outcome, the trainer needs to adjust one or more of the workout variables mid-workout (e.g., load, repetitions). This is mandatory if an athlete cannot maintain safe mechanics. In these instances, it is important the trainer is firm with his or her decision. If he or she has built a good rapport with athletes, they should have no problem with such adjustments.

PROGRAMMING CONSIDERATIONS: COMMON PITFALLS

If a programmer regularly assesses his or her athletes and observes the trends in data, he or she can quickly adjust ineffective programming. Conversely, CrossFit programmers who do not regularly assess data can fall prey to common faults, some of which are described below.

1. The first common error made by CrossFit programmers is a lack of regular assessment to determine effectiveness. Measurable results in performance markers are the guideposts for a programmer to determine whether the past programming was productive, as well as what needs to be programmed next. Lack of assessment may occur from not repeating benchmark workouts, and/or not recording results. Trainers need to encourage
members to record results to assist with this effort. Clients generally like this record of progress, particularly after months and years of hard work.

2. Another error for CrossFit programmers occurs when variance is not applied correctly, and this is usually expressed in one of three ways: randomization of workout variables, biasing certain variables, or emphasizing non-essential elements. As mentioned above, optimal variance of workout variables requires intentional planning not merely spinning the hopper and pulling out random tasks. A hopper may be used as a good test of fitness (i.e., is an athlete ready for anything?), but it is not a good method to prepare for everything. Reliance on the hopper would leave to chance the broad, general, and inclusive adaptations CrossFit is trying to develop. Programming via a hopper may be fun once in a while and can be used occasionally in competitions, but it is not a method by which to program for the best results.

Biasing occurs when certain elements or combinations are repeated too often, with some elements avoided completely. There is nothing inherently bad about biasing as long as that is the intended goal. Biasing is a problem if the goal is to develop general physical preparedness.

Another misapplication of variance is emphasizing non-essential elements. This appears as an endless combination of workout variables regardless of their utility or effect. For example, never repeating workouts, performing lots of accessory or skill movements in actual workouts (e.g., Sots presses, one-legged work, sport-specific drills), or focusing too much on environmental factors (e.g., working out with a gas mask or in the middle of the night) can be signs that variance is being misapplied. It can be easy for newer programmers to believe “complicated” and “unique” programming provides a superior stimulus because of the novelty.

3. A third common error in CrossFit programming is a lack of higher-skill development. This can occur when certain movements are avoided in workouts or when warm-ups are not used to address weaknesses. A current trend within the community is to avoid the more difficult gymnastics movements. CrossFit athletes are willing to tackle the technical weightlifting movements such as the snatch and clean and jerk but do not spend as much time developing the more technical counterparts in gymnastics, such as levers, planches, presses to handstands, or pirouettes.

4. CrossFit programmers may be tempted to use excessive volume. This occurs with more than one training session a day (i.e., double days). In some cases, athletes may even attempt more than two sessions. This pitfall affects those trying to emulate the volume sometimes used by CrossFit Games athletes. Games athletes’ training is not representative of what CrossFit programming should look like. Multiple sessions a day are not appropriate for 99 percent of CrossFit athletes (less than one percent of those who participate in the Open go to the Games). Even multiple workouts in one extended “session” should generally be avoided. Extra sessions and/or extra workouts may help performance in the short term but often lead to overtraining, higher risk of injury, and burnout in the long term. Double days help Regional or Games athletes prepare for high-volume competition and can help them get in more volume so they can advance certain skills relative to their competitors. Generally, however, there is actually a decrease in intensity across sessions.
As Coach Glassman asserted, “Be impressed by intensity, not volume.” If a client is looking to be competitive, very gradually and cautiously increase volume. For example, start with additional skill sessions (e.g., double-under practice) in areas in which the athlete is not as proficient, not multiple workouts. Look at CrossFit.com and assess what the athlete cannot complete, then add “volume” by way of working on these skills. The volume should gradually increase over the long term.

5. Another trickle-down effect from the Games is the assumption that the “CrossFit standard” for a movement is what is performed at the CrossFit Games. Standards in competition are set for ease of judging and do not necessarily represent “the” expression or “the best” expression of the movement. They are used to establish the minimum requirements for a repetition, and an athlete is held to those standards to ensure the range of motion is the same across all competitors. Take, for example, hand-release push-ups: there is nothing better about them in terms of muscular development or mechanical advantage. They are used because they are easier to judge; a judge can easily ensure the chest and thighs make contact with the ground on every single repetition. Standards in competitions should not prevent an athlete from using (or a trainer from teaching) many different movement mechanics to developing a broad athletic capacity. There are different adaptations to all movements, and variations at the very least improve the overall coordination of an athlete who can accomplish a single task in multiple ways. CrossFit encourages athletes to learn all possible techniques and not a single “standard” (e.g., strict, chest-to-bar, kipping, and butterfly kipping pull-ups). This is another face of variance needed to develop the athletic capacity to accomplish tasks in multiple ways, and it is what will best prepare one for any test of fitness.

6. The last common error in programming is misapplication of sport-specific preparation.

Many CrossFit trainers have some sport-specific athletes looking to incorporate CrossFit training into their regime. While sport-specific athletes cannot use CrossFit as a substitute for their sport-specific practice, fixing deficiencies in their general physical preparedness has immediate benefit within their sport. These carry-over benefits may not have obvious mechanical or metabolic explanations. For specialists at the advanced tier of their sport, there is a greater margin to improve their performance by improving their general physical preparedness versus spending more time in sport-specific strength-and-conditioning training. Sport training and physiology are not so well understood that highly specialized strength-and-conditioning routines are optimally effective, and CrossFit brings a combination of adaptations that lead to improved performance.

A CrossFit trainer needs to remember that he or she coaches CrossFit and should not attempt to mimic the sport within CrossFit workouts. A CrossFit trainer is not the athlete’s swim, soccer, or tennis coach and should not attempt to coach beyond his or her knowledge. Doing so results in a trainer giving poor CrossFit training and poor sport-specific training. The CrossFit trainer needs to program CrossFit for these sport-specific athletes, just as for their non-sport-specific clients. The sport practices and sport coaches will improve the specific skills needed on the field, in a match, etc.

CrossFit trainers do need to be mindful of this athlete’s competition season to be sure the volume of CrossFit is helping, not hurting, his or her sport performance. CrossFit training
is secondary to the sport training, particularly in season. There is often a natural trade-off in volume between CrossFit and the sport training depending on the time of year relative to the in-season period. This is to allow more time and energy for competition when seasonal demands are higher. This may not be necessary for all athletes in all sports. The general guideline is to add CrossFit volume cautiously while constantly assessing sport performance, while being particularly cautious when an athlete is near in time to a important event.

Specialty Seminars and Subject-Matter Experts

CrossFit’s multiple specialty seminars, conducted by subject-matter experts, have a sport- or modality-specific view regarding fitness and functional movement. CrossFit’s specialty seminars allow participants to focus on a specific modality or set of movements. It is important to understand, by definition, these experts have a bias in their viewpoint of programming and/or movements because they are modality- or movement-specific coaches. They are not generalist or CrossFit coaches. Their sports or modalities have different methods of assessment when compared to CrossFit. For example, they may bias short-duration, high-end power (e.g., Olympic lifters or powerlifters), they may be assessed by certain aesthetics (e.g., gymnastics), they may need to be proficient with certain implements over others (e.g., kettlebells), or they may be interested in optimizing theoretical efficiency or flexibility (e.g., mobility). When developing general fitness, not all of these considerations are necessary to the degree they are emphasized in specialty courses.

The benefit of subject-matter experts for CrossFit athletes is the time spent improving movement mechanics, which readily transfers to fitness as defined by CrossFit. There is a small percentage of material from subject-matter experts (e.g., toes forward in a squat stance, pointed toes in a handstand) that is sport or modality specific, and a CrossFit athlete needs to make an honest assessment of his or her goals to determine if that technique will actually increase fitness. It is acceptable if athletes adopt a certain technique because they want to specialize so long as they realize it as such.

CONCLUSION

Effective programming occurs by applying basic tenets when selecting workout elements and combinations. Long-term program design is best guided by observing results: objective and measurable change in performance markers. The elements of the daily workouts are one of many factors that effect how well an individual optimizes their fitness. Other factors, such as effective coaching and using intensity need to be assessed to determine how best to make meaningful changes for improved fitness.
GROUP PROGRAMMING ANALYSIS

- Student groups examine nine days of sample programming, and program three additional days from that utilizing information presented from the Effective Program Design lecture.
- Each group presents to the rest of the class their three days of programming.
- To help analyze the sample programming, there is a simple spreadsheet (“Programming Analysis Worksheet” on page 62. The spreadsheet is a tool to help analyze themes; not a perfect system to write programming.

PROGRAMMING ANALYSIS SHEET INSTRUCTIONS

- The sheet has been divided such that different aspects of the workouts can be generally categorized.
- The categories are modality/load (mark all and as many times as represented), time, repetitions (total across workout, do not count running steps, rowing strokes), scheme (number of movements represented), priority, and movements.
- There will not be an even balance across all categories because of tenets of effective program variance (e.g., <15 min workouts, task priority, full body, high power movements).
- Consistency is important here. Although categorizing loading and time is dependent on the capacity of each athlete, pick one type of athlete and be consistent across the entire sheet.
Programming Analysis Worksheet

<table>
<thead>
<tr>
<th>Workout Descriptor</th>
<th>WOD 1</th>
<th>WOD 2</th>
<th>WOD 3</th>
<th>WOD 4</th>
<th>WOD 5</th>
<th>WOD 6</th>
<th>WOD 7</th>
<th>WOD 8</th>
<th>WOD 9</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality/Load</td>
<td></td>
</tr>
<tr>
<td>Gymnastics</td>
<td></td>
</tr>
<tr>
<td>Weightlifting</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
</tr>
<tr>
<td>Monostructural</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Heavy Day</td>
<td></td>
</tr>
<tr>
<td>< 5 min</td>
<td></td>
</tr>
<tr>
<td>5–10 min</td>
<td></td>
</tr>
<tr>
<td>11–20 min</td>
<td></td>
</tr>
<tr>
<td>> 20 min</td>
<td></td>
</tr>
<tr>
<td>Total Repetitions</td>
<td></td>
</tr>
<tr>
<td>Low (< 50 reps)</td>
<td></td>
</tr>
<tr>
<td>Medium (50–100 reps)</td>
<td></td>
</tr>
<tr>
<td>High (>100 reps)</td>
<td></td>
</tr>
<tr>
<td>Scheme</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>Couplet</td>
<td></td>
</tr>
<tr>
<td>Triplet</td>
<td></td>
</tr>
<tr>
<td>≥ 4 moves & chippers</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>Task Priority</td>
<td></td>
</tr>
<tr>
<td>Time Priority</td>
<td></td>
</tr>
<tr>
<td>Movements - Gymnastics</td>
<td></td>
</tr>
<tr>
<td>Air Squat</td>
<td></td>
</tr>
<tr>
<td>Box Jump</td>
<td></td>
</tr>
<tr>
<td>Burpee</td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td></td>
</tr>
<tr>
<td>GHD Sit-up</td>
<td></td>
</tr>
<tr>
<td>Hip/Back Extension</td>
<td></td>
</tr>
<tr>
<td>Handstand Push-up</td>
<td></td>
</tr>
<tr>
<td>Knee-to-Elbow/Toe-to-Bar</td>
<td></td>
</tr>
<tr>
<td>Muscle-up</td>
<td></td>
</tr>
<tr>
<td>Pull-up</td>
<td></td>
</tr>
<tr>
<td>Push-up</td>
<td></td>
</tr>
<tr>
<td>Sit-up</td>
<td></td>
</tr>
<tr>
<td>Movements - Weightlifting</td>
<td></td>
</tr>
<tr>
<td>Back Squat</td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td></td>
</tr>
<tr>
<td>Deadlift</td>
<td></td>
</tr>
<tr>
<td>Front Squat</td>
<td></td>
</tr>
<tr>
<td>Kettlebell Swing</td>
<td></td>
</tr>
<tr>
<td>Overhead Squat</td>
<td></td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>Push Jerk</td>
<td></td>
</tr>
<tr>
<td>Push Press</td>
<td></td>
</tr>
<tr>
<td>Sumo Deadlift High Pull</td>
<td></td>
</tr>
<tr>
<td>Snatch</td>
<td></td>
</tr>
<tr>
<td>Thruster</td>
<td></td>
</tr>
<tr>
<td>Wallball</td>
<td></td>
</tr>
<tr>
<td>Movements - Monostructural</td>
<td></td>
</tr>
<tr>
<td>Double Unders</td>
<td></td>
</tr>
<tr>
<td>Rowing</td>
<td></td>
</tr>
<tr>
<td>Running</td>
<td></td>
</tr>
</tbody>
</table>
Programming Analysis Worksheet

<table>
<thead>
<tr>
<th>Workout Descriptor</th>
<th>WOD 1</th>
<th>WOD 2</th>
<th>WOD 3</th>
<th>WOD 4</th>
<th>WOD 5</th>
<th>WOD 6</th>
<th>WOD 7</th>
<th>WOD 8</th>
<th>WOD 9</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality/Load</td>
<td></td>
</tr>
<tr>
<td>Gymnastics</td>
<td></td>
</tr>
<tr>
<td>Weightlifting</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
</tr>
<tr>
<td>Monostructural</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Heavy Day</td>
<td></td>
</tr>
<tr>
<td>< 5 min</td>
<td></td>
</tr>
<tr>
<td>5–10 min</td>
<td></td>
</tr>
<tr>
<td>11–20 min</td>
<td></td>
</tr>
<tr>
<td>> 20 min</td>
<td></td>
</tr>
<tr>
<td>Total Repetitions</td>
<td></td>
</tr>
<tr>
<td>Low (< 50 reps)</td>
<td></td>
</tr>
<tr>
<td>Medium (50–100 reps)</td>
<td></td>
</tr>
<tr>
<td>High (>100 reps)</td>
<td></td>
</tr>
<tr>
<td>Scheme</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>Couplet</td>
<td></td>
</tr>
<tr>
<td>Triplet</td>
<td></td>
</tr>
<tr>
<td>≥ 4 moves & chippers</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>Task Priority</td>
<td></td>
</tr>
<tr>
<td>Time Priority</td>
<td></td>
</tr>
<tr>
<td>Movements -</td>
<td></td>
</tr>
<tr>
<td>Gymnastics</td>
<td></td>
</tr>
<tr>
<td>Air Squat</td>
<td></td>
</tr>
<tr>
<td>Box Jump</td>
<td></td>
</tr>
<tr>
<td>Burpee</td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td></td>
</tr>
<tr>
<td>GHD Sit-up</td>
<td></td>
</tr>
<tr>
<td>Hip/Back Extension</td>
<td></td>
</tr>
<tr>
<td>Handstand Push-up</td>
<td></td>
</tr>
<tr>
<td>Knee-to-Elbow/Toe-to-Bar</td>
<td></td>
</tr>
<tr>
<td>Muscle-up</td>
<td></td>
</tr>
<tr>
<td>Pull-up</td>
<td></td>
</tr>
<tr>
<td>Push-up</td>
<td></td>
</tr>
<tr>
<td>Sit-up</td>
<td></td>
</tr>
<tr>
<td>Movements -</td>
<td></td>
</tr>
<tr>
<td>Weightlifting</td>
<td></td>
</tr>
<tr>
<td>Back Squat</td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td></td>
</tr>
<tr>
<td>Deadlift</td>
<td></td>
</tr>
<tr>
<td>Front Squat</td>
<td></td>
</tr>
<tr>
<td>Kettlebell Swing</td>
<td></td>
</tr>
<tr>
<td>Overhead Squat</td>
<td></td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>Push Jerk</td>
<td></td>
</tr>
<tr>
<td>Push Press</td>
<td></td>
</tr>
<tr>
<td>Sumo Deadlift High Pull</td>
<td></td>
</tr>
<tr>
<td>Snatch</td>
<td></td>
</tr>
<tr>
<td>Thruster</td>
<td></td>
</tr>
<tr>
<td>Wallball</td>
<td></td>
</tr>
<tr>
<td>Movements -</td>
<td></td>
</tr>
<tr>
<td>Monostructural</td>
<td></td>
</tr>
<tr>
<td>Double Unders</td>
<td></td>
</tr>
<tr>
<td>Rowing</td>
<td></td>
</tr>
<tr>
<td>Running</td>
<td></td>
</tr>
</tbody>
</table>
PROGRAMMING THREE ADDITIONAL WORKOUTS

NEEDED FOR VARIANCE

Review the first nine days, and identify what elements should next be addressed to best promote variance.

Modality/Load: __

Time: __

Total Repetitions: ___

Scheme: ___

Priority: ___

Movements (general): _____________________________________

WORKOUT 10

Target Element to Address: __________________________________

Workout: ___

__

Scaling for Beginner / Intermediate / Advanced / Injured (circle one): ______________________________

__

__

WORKOUT 11

Target Element to Address: __________________________________

Workout: ___

__

Scaling for Beginner / Intermediate / Advanced / Injured (circle one): ______________________________

__

__
WORKOUT 12

Target Element to Address: __

Workout: __

__

Scaling for Beginner / Intermediate / Advanced / Injured (circle one): __________________________

__

__

__
HEAVY DAYS

There is the tendency for new CrossFit athletes and trainers to avoid heavy days entirely or execute them incorrectly. However, CrossFit is a strength-and-conditioning program. While people sometimes characterize CrossFit by the mixed-modal workouts for time ("met-cons"), this is a limited view. Days devoted to strength training are an essential variant of CrossFit and are also “CrossFit” workouts.

Heavy days are necessary to build top-end strength and power or work capacity in the intervals of about 10 seconds or less. Power output decreases with time, meaning that an athlete’s work capacity in very short time domains sets the theoretical limit for his or her entire curve (Figure 1). It is possible to have high levels of short-duration power and little power elsewhere (e.g., a powerlifter), but it is impossible to have low levels of short-duration power and higher levels of longer duration power. Therefore, heavy days are essential to a general physical preparedness program and should be used at least once a week or once every two cycles (where a cycle is three-on-one-off).

![Figure 1. Generalized work-capacity curve.](image)

Heavy days are not the only time athletes drive strength adaptations. Even within a metabolic-conditioning workout, depending on the task and the capacity of the athlete, any number of exercises may build strength. Push-ups for novices build pressing strength similar to a bench press, and attempting a 95-lb. thruster for a new CrossFit athlete builds squatting strength. As an athlete’s strength increases, push-ups and 95-lb. thrusters tend to favor other adaptations, such as stamina, and greater loads are necessary to further increase top-end power.

Heavy days can be completed with most any weightlifting or gymnastics movement, such as weighted dips and pull-ups and lifting odd objects (e.g., sandbag, axle). More often than not, however, a barbell is best because it is impossible to match the potential loading with other equipment. Heavy days may also include all variations of movements (e.g., hang, power, from a deficit, pulling from pins/bumpers).
Repetition schemes
The heavy-day workout consists of small sets, most often in the range of 1-5 repetitions, where the total volume of working repetitions is approximately 7-25. Repetitions significantly outside of this range do not produce the desired response. If there are too few repetitions (e.g., one repetition of a near-maximum load), the athlete does not produce enough stress on the taxed muscles to drive a new adaptation. Conversely, too many repetitions (e.g., 30 or more repetitions of near-maximum load), produces too much stress for the athlete to recover from in a reasonable time period. The working sets generally occur at or above 80-85 percent of a one-repetition-maximum load, and warm-up sets used to get to this loading do not count toward the total working repetitions. This is not an exact percentage, but a working set should be heavy enough to require concentrated effort. The working sets also do not produce a significant cardiorespiratory response.

Repetition schemes may vary. As a general guideline: the higher the repetitions in a set or across the entire session, the lower the loading. This tends to better develop muscular stamina and/or technique. The lower the repetitions, the higher the loading. This tends to better develop top-end strength. Both approaches should be used. Repetition patterns include standard schemes such as 7 x 1, 5 x 3, 5 x 5 (sets x reps); pyramid schemes of 1-2-3-2-1 (reps per set); descending/ascending schemes such as 5-4-3-2-1 (reps per set); no set specificity (e.g., work up to a max push press); on-the-minute training (1, 2 or 3 repetitions on the minute every minute for 10 minutes); among others. Failed attempts count towards working sets, however the goal of a session should be to complete the majority of lifts.

Heavy days are for everyone: the young, old, fit, and unfit. Using the concept of relative intensity, a trainer has each athlete lift a load that is relatively heavy for him or her. Even beginners should participate, although a trainer should be more cautious progressing a new athlete in load. Trainers can potentially give beginners more repetitions (either within each set or increase the total number of sets) to very gradually progress to a reasonably challenging working weight while instilling appropriate mechanics. Relatively new athletes often set a personal record or best every time they lift heavy. As the lifter becomes more experienced, sessions without a new personal record may occur. Setting a personal record is not necessary to reap the benefits from lifting heavy.

Minimizing risk
As risk increases with load, the trainer has several safety concerns to manage when leading a strength session. A heavy-day class best begins with a thorough warm-up to prepare the athletes for maximal loading (e.g., increase core temperature and improve range of motion). It also provides the trainer an opportunity to correct and refine mechanics across warm-up sets of the movement to minimize risk. Finding the best way to complete warm-up sets usually becomes an intuitive process as athletes become more experienced with lifting heavy. However, most athletes in their first few years still need direction through this section. Common practice for warm-up sets is at least 3-5 warm-up sets, where the sets start with a lighter weight/higher repetition count and progress to heavier weight/lower repetition count. The rest periods in the warm-up sets do not need to be as long as during the working sets. Whatever the warm-up set practice is, trainers cannot fatigue the athlete for the work sets. Instead, warm-up sets gradually prime the body for heavier loading while refining the mechanics of the lift.
The trainer must also teach each member how to bail and/or spot as necessary before any significant weight is attempted. It is easiest to have participants practice this with PVC or a dowel. A trainer cannot assume athletes will perform bailing or spotting techniques correctly without specific instructions. The gym floor also needs to be arranged to ensure safe walkable distance between working members, and the floor should be absent of extra equipment. Trainers may choose to have participants to share racks, in part to reduce equipment and space needs. Sharing racks also allows athletes to help one another with loading, unloading and spotting. It also allows for adequate rest time between sets so athletes fully recover. When using racks, additional instructions are needed to ensure athletes keep enough distance from themselves and the racks when lifting. The trainer needs to clearly describe how the working sets should be approached to avoid confusion. For example, the workout may be 5 x 5 front squat. Does the trainer want the athletes to try to increase the load with every set? Does the trainer want the athletes to hold a certain percentage across all sets? Or does the trainer perhaps want the athletes to find a new five-repetition maximum, meaning the exact number of working sets is less important (maybe it takes 4 sets, maybe 5 sets)? All these approaches have validity and potential benefits, but the trainer needs to indicate what the intent is on a particular day.

During the working sets, the trainer must appropriately apply the principles of threshold training just as he or she would in any other workout. Once an athlete’s mechanics significantly deviate from the points of performance, the load needs to be reduced. This is especially true when multiple verbal and visual cues do not result in any improvement in mechanics. It is possible that the trainer can fix the mechanics at lighter load and then allow the athlete to again increase the load gradually. It may also require the trainer to change the movement for a few repetitions before using the entire movement (e.g., using snatch pulls to correct an athlete who is pulling early in the full snatch). Once the workout is complete, the trainer should include equipment cleanup and workout logging as part of the post-workout period.

CONCLUSION
Trainers need to regularly program strength days with their clients and ensure all participants achieve the desired stimulus per session. These sessions provide the coaches and athletes opportunities to improve mechanics, acquire new skills, and see progress in modality that is vital to developing the fitness CrossFit seeks.